Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
基本信息
- 批准号:9762600
- 负责人:
- 金额:$ 47.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAdultAnimalsArm BonesBiochemicalBiologyCandidate Disease GeneCartilageChickensChiropteraChondrocytesChondrogenesisCleaved cellComplexCoupledDataData SetDevelopmentDigit structureDipodidaeDistalDolphinsDwarfismElementsEmbryoEnhancersEpiphysial cartilageEvolutionFingersForelimbGene ExpressionGene Transfer TechniquesGenesGeneticGenetic DeterminismGenomeGrowthHindlimbHumanIGF1 geneIGFBP5 geneIn VitroInsulin-Like Growth-Factor-Binding ProteinsKnowledgeLaboratoriesLaboratory miceLeg BonesLengthLimb structureLinkLocationMetatarsal bone structureModelingMusOrganOrganismOrthologous GenePathway interactionsPeptide HydrolasesPhalanx of handPhylogenetic AnalysisPositioning AttributePublic HealthRadialRegulatory ElementResearchResistanceRoleSequence HomologyShapesSignal PathwaySignal TransductionSignaling ProteinSkeletal DevelopmentSkeletonStructureTestingTissuesToesTransgenic MiceVertebratesWhole OrganismWingWorkbonecomparativecomparative genomicsdexteritydifferential expressionfootgene functiongraspin vivoinhibitor/antagonistlong boneloss of function mutationmutantnew growthorgan growthoverexpressionpredictive modelingskeletaltranscriptome sequencingulna
项目摘要
The length of each skeletal element changes independently during development and evolution to
transform an embryonic skeleton with similar sized cartilages into a diverse array of adult forms and functions.
Loss of function mutations of many genes produce proportionately dwarfed skeletons that suggest a common
“toolkit” is required for elongation of all of the long bones. Far less well understood, however, are the
mechanisms that establish the specific rate and duration of elongation at each growth plate, which together
determine adult limb skeletal proportion. What are the genes that define skeletal proportion? Is differential
growth controlled by modular enhancers that locally tune expression of genes common to all growth
plates and/or by genes that function only in subsets of growth plates?
Our laboratory is positioned to answer these profoundly important questions about how vertebrate limbs
acquire form and function using two uniquely suitable species: the laboratory mouse and the lesser Egyptian
jerboa. Among the nearest mouse relatives, the jerboa has the most extremely different hindlimbs with
extraordinarily long feet, but its forelimbs are similar to the mouse. These similarities and differences coupled
with high genome sequence homology enable the identification of genetic mechanisms that locally control
skeletal growth rate. RNA-Seq analysis of mouse and jerboa forelimb and hindlimb elements revealed that
10% of orthologous genes are differentially expressed correlating with relative growth rates within and between
species. These include 40 genes with strong evidence for enhancer modularity in both species. Aim 1 will
implement comparative ATAC-Seq and mouse transgenesis to identify and functionally test modular enhancers
in the mouse and jerboa genomes. We predict that some of these 40 genes are controlled by radius/ulna
enhancers that are conserved between species and by distinct metatarsal enhancers that functionally diverged
in jerboa and allowed the uncoupled evolution of jerboa hindlimb proportion.
Our expression data also provides a valuable opportunity to fill critical gaps in our understanding of the
genes that regulate limb skeletal growth and proportion in all vertebrates. We previously showed that IGF1
signaling is required in mice for hypertrophic chondrocyte size differences in growth plates that elongate at
different rates. Although IGF1 has a well-established role in whole organism and organ growth, it is unclear
how the pathway is locally regulated to modulate differential growth. In Aim 2, we will biochemically test the
hypothesis that elevated protease expression in rapidly elongating skeletal elements cleaves IGF binding
proteins thus freeing bioactive IGF1 protein for signaling to accelerate growth. Although six other high priority
candidate genes are also expected to be critical regulators of skeletal growth, they have not yet been attributed
growth plate functions. Aim 3 will implement a powerful overexpression approach in chicken embryos to test
the hypothesis that each of these genes is sufficient to accelerate or inhibit limb growth rate.
每个骨骼元素的长度在发育和进化过程中独立变化
将具有相似大小软骨的胚胎骨骼转化为各种成人形式和功能。
许多基因的功能丧失突变会产生比例矮小的骨骼,这表明存在一种常见的现象
然而,延长所有长骨所需的“工具包”却鲜为人知。
建立每个生长板的具体伸长率和持续时间的机制,这些机制一起
决定成人肢体骨骼比例的基因有哪些?
生长由模块化增强子控制,局部调节所有生长共有的基因的表达
板和/或仅在生长板子集中起作用的基因?
我们的实验室致力于回答这些极其重要的问题,即脊椎动物的四肢如何
使用两种独特合适的物种获得形态和功能:实验室小鼠和小埃及小鼠
在老鼠的近亲中,跳鼠的后肢差异最大。
脚特别长,但前肢与老鼠相似,这些相似之处也有不同之处。
具有高基因组序列同源性,能够识别局部控制的遗传机制
小鼠和跳鼠前肢和后肢元件的 RNA-Seq 分析表明
10% 的直系同源基因存在差异表达,与组内和组间的相对生长率相关
其中包括 40 个基因,这些基因在两个物种中均具有增强子模块性的有力证据。
实施比较 ATAC-Seq 和小鼠转基因来识别和功能测试模块化增强子
在小鼠和跳鼠基因组中,我们预测这 40 个基因中的一些是由桡骨/尺骨控制的。
物种间保守的增强子以及功能上不同的不同跖骨增强子
在跳鼠中,并允许跳鼠后肢比例的非耦合进化。
我们的表达数据还提供了一个宝贵的机会来填补我们理解的关键空白
我们之前发现 IGF1 是调节所有脊椎动物肢体骨骼生长和比例的基因。
小鼠生长板中的肥大软骨细胞尺寸差异需要信号传导,这些差异在
尽管 IGF1 在整个有机体和器官生长中具有明确的作用,但尚不清楚。
在目标 2 中,我们将通过生化测试该途径如何进行局部调节。
假设快速伸长的骨骼元件中蛋白酶表达升高会裂解 IGF 结合
从而释放具有生物活性的 IGF1 蛋白,用于发出加速生长的信号,但还有其他六种高度优先的蛋白。
候选基因也有望成为骨骼生长的关键调节因子,但尚未被归因
Aim 3 将在鸡胚胎中实施强大的过表达方法来测试。
假设这些基因中的每一个都足以加速或抑制肢体生长速度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Lynn Cooper其他文献
Kimberly Lynn Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Lynn Cooper', 18)}}的其他基金
Development of approaches to apply CRISPR/Cas9-mediated gene conversion to model complex genetic traits in mice
开发应用 CRISPR/Cas9 介导的基因转换来模拟小鼠复杂遗传性状的方法
- 批准号:
10565297 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10043332 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10215395 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10043332 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10164722 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
9895624 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10382419 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10599856 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
An exploration of the mechanisms of naturally occurring limb muscle loss during neonatal development
新生儿发育过程中自然发生的肢体肌肉丧失机制的探索
- 批准号:
9882964 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
MicroRNA Function in the Developing Vertebrate Limb
MicroRNA 在脊椎动物肢体发育中的功能
- 批准号:
7054901 - 财政年份:2006
- 资助金额:
$ 47.25万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别: