Linking Motor Cortex Activity and Movement in the Mouse Orofacial System
将小鼠口面部系统中的运动皮层活动和运动联系起来
基本信息
- 批准号:10759697
- 负责人:
- 金额:$ 3.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AreaAutomobile DrivingBehaviorBehavioralBehavioral ParadigmBiomimeticsBrainBrain StemBrain regionCell NucleusCellsCognitiveCommunicationComplexComputer ModelsCoupledDedicationsDimensionsEvaluationExhibitsGeneticGoalsIndividualInfluentialsLearningLinkMammalsMapsMediatingMethodsModelingMotorMotor ActivityMotor CortexMotor NeuronsMotor outputMovementMovement DisordersMusNeuronsNeurosciencesOutcomeOutputPathway interactionsPatternPhysiologyPlayPopulationPrimatesProductionRoleSignal TransductionSiliconSpace ModelsSpecificitySpinalStructureSystemTestingTimeTongueVariantVertebral columnViralbrain machine interfacecell typecognitive processdata modelingexperimental studyflexibilityhypoglossal nucleusimprovedmotor controlneuralneural circuitneural patterningneurophysiologyneurotransmissionnext generationnonhuman primateoptogeneticsorofacialpreventresponsesegregationsensory feedbacktooltransmission process
项目摘要
Information flow through neural circuits is dynamic. The set of brain areas that are engaged in computation are
ever changing according to behavioral demands. How circuits in the brain are functionally coupled and
uncoupled on behavioral time scales so that information can be relayed to the appropriate place at the
appropriate time remains a major outstanding question in systems neuroscience. This question is of particular
relevance in the motor system. The production of movements is one of the most fundamental functions of the
brain, and in mammals, flexible movements depend on the motor cortex. Neural activity in the motor is cortex
complex, made up of control signals that drive movements in addition to activity related to motor planning,
learning, and other cognitive processes. This wide array of signals is multiplexed within the same circuit and,
often, within the same cells. How does the brain regulate which activity patterns are communicated to the
periphery to drive movements and which are confined to local circuits for local cortical computation? An
influential hypothesis proposed to explain why only some activity patterns generate movements – the null
space model – provides a biologically plausible computational strategy for segregating cognitive signals from
those that are transmitted to the periphery to produce movement. The null space model suggests that
cognitive signals are restricted to patterns whose impact on downstream motor areas effectively cancel out –
they are ‘output-null.’ Preliminary evidence suggests that activity patterns in the primate motor cortex may be
consistent with the null space model, but thus far it has been challenging to establish a causal link between
these neural activity patterns and behavior.
In this proposal, we examine the flow of neural signals from the motor cortex to the motor neurons that control
the musculature to determine whether the null space model accurately predicts which neural signals have a
causal role in generating movements. Powerful, emerging methods for multi-regional physiology allow us to
examine neural activity at each processing stage along this pathway, an essential requirement for
understanding how cortical activity patterns are transformed into movements. Cell-type specific optogenetic
perturbations allow us to disambiguate the neural signals that drive movements from those that are simply a
consequence and will help to establish a causal relationship between neural activity and movements.
Understanding how neural activity relates to behavior will ultimately help us better interpret the deficits
expressed in movement disorders and motivate improved brain-machine interfaces and biomimetic control
strategies for use in the next generation of artificial systems.
通过神经回路的信息流是动态的。参与计算的大脑区域是动态的。
根据行为需求不断变化的大脑回路如何功能耦合和
在行为时间尺度上解耦,以便信息可以转发到适当的地方
适当的时间仍然是系统神经科学中一个主要的悬而未决的问题,这个问题尤其重要。
运动系统的相关性。运动的产生是最基本的功能之一。
大脑,而在哺乳动物中,灵活的运动取决于运动皮层。运动皮层的神经活动。
复杂,由控制信号组成,除了与运动规划相关的活动外,还驱动运动,
学习和其他认知过程中的各种信号在同一电路中进行多路复用,并且
通常,在相同的细胞内,大脑如何调节哪些活动模式被传达给大脑。
驱动运动的外围设备以及哪些仅限于局部皮层计算的局部电路?
提出有影响力的假设来解释为什么只有某些活动模式会产生运动——零
空间模型——提供了一种生物学上合理的计算策略,用于将认知信号与
那些被传输到外围以产生运动的零空间模型表明:
认知信号仅限于对下游运动区域的影响有效抵消的模式 -
它们是“无输出”的。初步证据表明,灵长类运动皮层的活动模式可能是
与零空间模型一致,但迄今为止,在两者之间建立因果联系一直具有挑战性
这些神经活动模式和行为。
在这个提案中,我们检查了从运动皮层到控制运动神经元的神经信号流
肌肉组织来确定零空间模型是否准确预测哪些神经信号具有
强大的、新兴的多区域生理学方法使我们能够
检查沿着这条路径的每个处理阶段的神经活动,这是
了解皮层活动模式如何转化为细胞类型特定的光遗传学。
扰动使我们能够消除驱动运动的神经信号与那些简单的运动的神经信号的歧义。
结果并将有助于建立神经活动和运动之间的因果关系。
了解神经活动与行为的关系最终将帮助我们更好地解释这些缺陷
表达于运动障碍并促进脑机接口和仿生控制的改善
用于下一代人工系统的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Nicholas Economo其他文献
Michael Nicholas Economo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Nicholas Economo', 18)}}的其他基金
Linking Motor Cortex Activity and Movement in the Mouse Orofacial System
将小鼠口面部系统中的运动皮层活动和运动联系起来
- 批准号:
10554287 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Linking motor cortex activity and movement in the mouse orofacial system.
将小鼠口面部系统的运动皮层活动和运动联系起来。
- 批准号:
10367341 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
High-throughput mapping of synaptic connectivity between transcriptomically defined cell types
转录组定义的细胞类型之间突触连接的高通量作图
- 批准号:
10413540 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
Linking motor cortex activity and movement in the mouse orofacial system.
将小鼠口面部系统的运动皮层活动和运动联系起来。
- 批准号:
10688983 - 财政年份:2022
- 资助金额:
$ 3.62万 - 项目类别:
The Functional Organization of Inhibition in the Olfactory Bulb In Vivo
体内嗅球抑制的功能组织
- 批准号:
8397200 - 财政年份:2012
- 资助金额:
$ 3.62万 - 项目类别:
The Functional Organization of Inhibition in the Olfactory Bulb In Vivo
体内嗅球抑制的功能组织
- 批准号:
8573250 - 财政年份:2012
- 资助金额:
$ 3.62万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
人机共驾型智能汽车驾驶行为特性及人机交互方法研究
- 批准号:51775396
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering sleep and circadian mechanisms contributing to adverse metabolic health
揭示导致不良代谢健康的睡眠和昼夜节律机制
- 批准号:
10714191 - 财政年份:2023
- 资助金额:
$ 3.62万 - 项目类别:
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
- 批准号:
10737217 - 财政年份:2023
- 资助金额:
$ 3.62万 - 项目类别:
Engineering Receptors to Control Platelet Activation and Therapeutic Release
工程受体来控制血小板激活和治疗释放
- 批准号:
10607886 - 财政年份:2023
- 资助金额:
$ 3.62万 - 项目类别:
Exploring corticostriatal dynamics associated with action control deficits in Neurexin1 alpha mutant mice
探索与 Neurexin1 α 突变小鼠的动作控制缺陷相关的皮质纹状体动力学
- 批准号:
10606118 - 财政年份:2023
- 资助金额:
$ 3.62万 - 项目类别:
Predictive Functions and Neural Mechanisms of Spontaneous Cortical Activity
自发皮质活动的预测功能和神经机制
- 批准号:
10572486 - 财政年份:2023
- 资助金额:
$ 3.62万 - 项目类别: