Shaping Motor Recovery After Stroke Using Activity-Dependent Stimulation
使用活动依赖性刺激塑造中风后运动恢复
基本信息
- 批准号:9676722
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnatomyAnimalsAreaAutomobile DrivingBehavioralBrainBrain InjuriesBrain regionCommunicationComputer softwareCustomDistantDriving neuroplasticityElectroencephalographyEtiologyFunctional Magnetic Resonance ImagingGlobal ChangeGoalsGrowth Associated Protein 43HumanImpairmentImplantIndividualInjuryIschemiaKnowledgeLeadLeftLesionLinkMeasuresMethodsMicroelectrodesMonitorMotorMotor ActivityMotor CortexNeocortexNeuronal PlasticityOutcomePathway interactionsPatternPerformancePhysiologicalProcessRattusRecoveryRecovery of FunctionRehabilitation therapyResearchRoleSensoryShapesSignal TransductionSite-Directed MutagenesisSomatosensory CortexSpinal CordStrokeSynaptophysinTechniquesTestingTherapeuticTrainingTranscranial magnetic stimulationUnited Statesawakebasecohortdesigndisabilityevidence basegrowth differentiation factor 10hemiparesisimprovedin vivoinsightischemic lesionmicrostimulationmotor deficitmotor disordermotor function improvementmotor function recoverymotor impairmentmotor learningmotor recoveryneurophysiologynovelnovel strategiesprogramsrelating to nervous systemrepairedresponsesomatosensorytemporal measurement
项目摘要
Summary/Abstract
Acquired brain injuries are major contributors to motor impairment and disability. When these injuries occur,
there are few proven strategies for promoting behavioral recovery. It is clear that the deficits resulting from
cortical injury are not entirely the result of the loss of the infarcted area. Rather, the disruption in the
coordinated neural activity of spared regions projecting to and receiving projections from the infarcted area
significantly contribute to the impairment. It is within these spared regions that significant neuroplasticity
occurs. This is the basis of rehabilitative therapies – motor learning and usage can promote reorganization by
driving neural activity that manifests in new and strengthened neural connections that can compensate for or
improve the motor impairment. There are current strategies to promote this neural activity, such as
transcranial magnetic stimulation and transcranial direct current stimulation, but these strategies are non-
specific, and have low spatial and temporal resolution. New strategies to utilize the intrinsic mechanisms of
neuroplasticity for shaping how neural communication is reestablished after an injury are necessary. One
mechanism for this is activity-dependent stimulation, where the intrinsic single-unit neural activity of one
region drives the activity in a distant region through intracortical microstimulation. This creates an artificial
communication bridge that may lead to physiological changes within and between the trigger and target
regions. The objectives of this research are 1) to develop a novel approach for driving recovery after motor
cortical injury by bridging disconnected regions of cortex using activity-dependent stimulation and 2) to
understand neuroplasticity-related mechanistic changes resulting from the cortical stimulation with the long-
term goals of creating novel strategies to promote recovery after injury related to disruption in neural
communication. The central hypothesis is that, after primary motor cortical injury, many of the resulting motor
deficits are due to the loss of integration of motor programs and somatosensory information within primary
motor cortex, and that reestablishing premotor-sensory communication will result in behavioral improvements
(Aim 1). In addition, this artificial bridging will lead to strengthened connections of the task-related neural
activity between premotor and somatosensory cortex (Aim 2) which should result in the increased expression
of neuroplastic markers necessary for driving novel anatomical connections (Aim 3). With this information, it
will be possible to design evidence-based strategies that more effectively drive the neuroplastic mechanisms
that are necessary for recovery of motor impairments after ischemic injury.
摘要/摘要
获得性脑损伤是导致运动障碍和残疾的主要原因。
几乎没有经过验证的促进行为恢复的策略。
皮质损伤并不完全是梗塞区域丧失的结果,而是梗塞区域破坏的结果。
投射到梗塞区域并接收来自梗塞区域的投射的幸存区域的神经协调活动
正是在这些幸存区域内,显着的神经可塑性导致了损伤。
这是康复治疗的基础——运动学习和使用可以通过以下方式促进重组。
驱动神经活动,表现为新的和强化的神经连接,可以补偿或
目前有一些策略可以促进这种神经活动,例如
经颅磁刺激和经颅直流电刺激,但这些策略都是非
特定的,并且具有低空间和时间分辨率利用内在机制的新策略。
神经可塑性对于塑造受伤后如何重建神经通讯是必要的。
其机制是活动依赖性刺激,其中一个固有的单单元神经活动
区域通过皮质内微刺激驱动远处区域的活动,这创造了一种人工。
沟通桥梁,可能导致触发器和目标内部以及之间的生理变化
本研究的目标是 1) 开发一种电机后驾驶恢复的新方法。
通过使用活动依赖性刺激桥接断开的皮质区域来损伤皮质;2)
长期皮质刺激导致的神经可塑性相关机制变化
制定新策略以促进与神经破坏相关的损伤后恢复的长期目标
中心假设是,在原发性运动皮质损伤后,许多由此产生的运动损伤。
缺陷是由于初级阶段运动程序和体感信息的整合缺失造成的
运动皮层,重建前运动感觉沟通将导致行为改善
(目标 1)此外,这种人工桥接将加强与任务相关的神经元的连接。
前运动皮层和体感皮层之间的活动(目标 2)应导致表达增加
驱动新的解剖连接所必需的神经可塑性标记(目标 3)。
将有可能设计基于证据的策略,更有效地驱动神经可塑性机制
这是缺血性损伤后运动障碍恢复所必需的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID GUGGENMOS其他文献
DAVID GUGGENMOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID GUGGENMOS', 18)}}的其他基金
The contribution of premotor cortex to recovery after stroke.
前运动皮层对中风后恢复的贡献。
- 批准号:
10720483 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Shaping Motor Recovery After Stroke Using Activity-Dependent Stimulation
使用活动依赖性刺激塑造中风后运动恢复
- 批准号:
9789677 - 财政年份:2018
- 资助金额:
$ 15.3万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Predictive Markers for Longitudinal TMJ Integrity
纵向颞下颌关节完整性的预测标记
- 批准号:
10648171 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
- 批准号:
10827155 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Simulating Ancestrally Unbiased Tumor Evolution To Interrogate Drug Resistance
模拟祖先无偏见的肿瘤进化来询问耐药性
- 批准号:
10687776 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别: