Novel Statistical Methods for Complex Time-to-Event Data in Cardiovascular Clinical Trials
心血管临床试验中复杂事件发生时间数据的新统计方法
基本信息
- 批准号:10734551
- 负责人:
- 金额:$ 33.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressArchivesBiological MarkersCardiopulmonaryCardiovascular systemCessation of lifeCharacteristicsChest PainClinical TrialsComplexCongestive Heart FailureDataDevelopmentEventFutureGoalsGrantHealthHeart failureHospitalizationInvestigationMachine LearningMeasuresMethodological StudiesMethodologyMethodsModelingModernizationMyocardial InfarctionOutcomePatientsProbabilityRandomizedRecording of previous eventsRecurrenceResearch DesignResearch PersonnelRisk AssessmentRisk FactorsSample SizeSeveritiesStatistical MethodsStrokeSubgroupTechniquesTestingTimeTime trendTreesWorkclassification treesconditioningcostdesignexperienceflexibilityfollow-upimprovedindexinginfluenza virus vaccinelife historymarkov modelmembermortalitynovelpredictive modelingpredictive toolsrandom forestresponserisk predictionsecondary analysissemiparametricstatisticstheoriestooltreatment effecttrial designuser-friendly
项目摘要
Project Summary:
Modern cardiovascular (CV) trials often collect data on a wide array of fatal and nonfatal events (e.g., heart
failure, heart attack, stroke, chest pain, and etc.) with different implications for patient health. In recent years,
new methods have started to emerge which seek to capture more events than the traditional endpoint of each
patient’s first event. However, to account for the totality of a composite endpoint while differentiating the
importance of its components (e.g., death vs CV hospitalization) is not easy. As it stands, investigators still lack
adequate tools to measure treatment effects, design future trials, assess risk factors, and build prediction models.
In this project, we address these gaps via four specific aims. In Aim 1, we consider a general class of
nonparametric effect-size estimands defined though pairwise comparison (both overall and subgroup-wise), in
which one component can be readily prioritized over another using a hierarchical rule of comparison. The inverse
probability censoring weighting (IPCW) and augmented inverse probability weighting (AIPW) techniques are
adapted to U-statistic estimators to correct for censoring bias and to improve efficiency (and thus reduce trial
cost) using patient data both pre- and post-randomization. In Aim 2, we develop routines to calculate power and
sample size for newly proposed methods for composite endpoints, such as the restricted mean time in favor of
treatment and while-alive loss rate, under both fixed and group sequential designs. In Aim 3, we propose novel
semiparametric regression models for composite endpoints following earlier work on the proportional win-
fractions (PW) model. In particular, the generalized semiparametric proportional odds (GSPO) model
accommodates nonproportional win fractions by extending traditional PO models to multiple events with ordered
severities. In Aim 4, we extend survival trees as a predictive tool from univariate to composite endpoints. Drawing
on classification trees for ordinal response, we develop time-integrated versions of the weighted Gini index and
twoing approach for node-splitting, and of a generalized concordance index for cross-validative pruning, thereby
accounting for both the timing and severity of the outcome events. The methods developed will be used for
secondary analyses of the recently concluded INfluenza Vaccine to Effectively Stop cardio-Thoracic Events and
Decompensated heart failure (INVESTED) trial (ClinicalTrials.gov: NCT02787044). Meanwhile, they will be
incorporated into new and existing R-packages on the Comprehensive R Archive Network (CRAN.R-project.org)
for public use by practitioners.
项目摘要:
现代心血管(CV)试验经常收集有关多种致命和非致命事件的数据(例如,心脏
失败,心脏病发作,中风,胸痛等)对患者的健康有不同的影响。
HABE开始出现新方法,试图捕获更多事件
但是,患者的第一个事件。
其组件的重要性(例如,死亡与简历住院)并不容易。
足够的工具来测量治疗效果,设计未来的试验,评估风险因素并建立预测模型。
在这个项目中,我们通过AIM 1中的四个特定目标解决了这些差距。
非参数估计是虽然成对比较(整体和亚组的)定义
哪个组件可以轻易优先于另一个组件。
概率中心审查权重(IPCW)和增强的反可能性加权(AIPW)技术为
适应U静态估计器以纠正审查偏差并提高效率(从而降低试验
成本)在AIM 2中使用患者数据既有后的机器化。
复合终点的新支撑方法的样本量,例如有限的平均时间,有利于
在AIM 3中,在固定和组序列设计下进行处理和较大的损失率。
在较早的工作以上的工作之后,用于复合终点的半参数回归模型
分数(PW)模型。
通过扩展的传统PO多个事件,可容纳非比例的胜利分数
严重性。
关于分类树以进行顺序响应,我们开发了加权的Gini索引的时间融合版本和
分解节点的两种方法,以及用于交叉验证修剪的广义一致性指数
对结果事件的时间和严重程度进行核算。
最近缔结的流感疫苗的次要分析有效停止心脏胸膜事件和
心力衰竭(投资)试验(ClinicalTrials.gov:NCT02787044)。
在综合R档案网络(cran.r-project.org)上纳入新的和现有的R包装中
用于从业者的公众使用。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A unified approach to the calculation of information operators in semiparametric models.
- DOI:10.1093/biomet/asaa037
- 发表时间:2020-12
- 期刊:
- 影响因子:2.7
- 作者:Mao LU
- 通讯作者:Mao LU
Statistical models for composite endpoints of death and non-fatal events: a review.
- DOI:10.1080/19466315.2021.1927824
- 发表时间:2021
- 期刊:
- 影响因子:1.8
- 作者:Mao L;Kim K
- 通讯作者:Kim K
A class of proportional win-fractions regression models for composite outcomes.
- DOI:10.1111/biom.13382
- 发表时间:2021-12
- 期刊:
- 影响因子:1.9
- 作者:Mao L;Wang T
- 通讯作者:Wang T
Editorial for "Relationship Between Patient-friendly Audiovisual Systems and MRI Contrast Agent to Adverse Reactions".
“患者友好型视听系统与 MRI 造影剂与不良反应之间的关系”的社论。
- DOI:10.1002/jmri.28991
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mao,Lu
- 通讯作者:Mao,Lu
Identification of the outcome distribution and sensitivity analysis under weak confounder-instrument interaction
弱混杂因素-仪器相互作用下结果分布的识别和敏感性分析
- DOI:10.1016/j.spl.2022.109590
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Mao, Lu
- 通讯作者:Mao, Lu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Mao其他文献
Lu Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Mao', 18)}}的其他基金
Novel Statistical Methods for Complex Time-to-Event Data in Cardiovascular Clinical Trials
心血管临床试验中复杂事件发生时间数据的新统计方法
- 批准号:
10063907 - 财政年份:2019
- 资助金额:
$ 33.66万 - 项目类别:
Novel Statistical Methods for Complex Time-to-Event Data in Cardiovascular Clinical Trials
心血管临床试验中复杂事件发生时间数据的新统计方法
- 批准号:
10311488 - 财政年份:2019
- 资助金额:
$ 33.66万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
GCS-CEAS: a novel tool for exposure assessment during disaster response
GCS-CEAS:灾难响应期间暴露评估的新工具
- 批准号:
10699942 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
An Integrated Data Approach to Exploring Racial Differences in Reading Intervention Effectiveness
探索阅读干预效果中种族差异的综合数据方法
- 批准号:
10567796 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Project 2: Mitigating Lung Cancer Disparities in Native Hawaiians: A Population-Based Approach to Evaluate Prevention Barriers and Lung Tumor Biology
项目 2:减少夏威夷原住民的肺癌差异:基于人群的方法来评估预防障碍和肺癌生物学
- 批准号:
10716155 - 财政年份:2023
- 资助金额:
$ 33.66万 - 项目类别:
Effect of Perinatal Exposure to Metals on Lung Function Trajectories and Mitochondrial DNA Heteroplasmy from Childhood to Adolescence
围产期金属暴露对儿童期至青春期肺功能轨迹和线粒体 DNA 异质性的影响
- 批准号:
10446235 - 财政年份:2022
- 资助金额:
$ 33.66万 - 项目类别: