Oxygen dynamics in FLASH radiotherapy
FLASH 放射治疗中的氧动力学
基本信息
- 批准号:10734478
- 负责人:
- 金额:$ 54.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-21 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteBiological MarkersBrainClinicalClinical TrialsColonConsumptionDNA DamageDataDedicationsDependenceDoseDose RateElectronsEnsureFormulationFutureGenetic RecombinationGoalsHydrogelsHypoxiaImageImplantIn VitroInjectableLaboratoriesLungMapsMeasurementMeasuresMethodsModelingNamesNormal tissue morphologyOpticsOrganOxygenOxygen ConsumptionOxygen saturation measurementPartial PressurePhysiologic pulseProtonsPublicationsRadiationRadiation Dose UnitRadiation OncologyRadiation therapyRadiobiologyRadiochemistryResearchResolutionResourcesRoentgen RaysRoleSkinSystemTechniquesTechnologyTestingTimeTissuesTumor TissueVariantWisconsinWorkbiomaterial compatibilitycherenkov imagingclinical applicationclinical translationconventional dosingdetectorexperimental studyimaging modalityin vivoinsightinventionluminescencemouse modelnovel strategiesphosphorescencepreservationrecruitrepairedsample fixationserial imagingtheoriestissue oxygenationtooltreatment planningtumor
项目摘要
Project Abstract
Oxygen sensing with high precision & high spatial localization can provide new insights into the action and effects
of ultra-high dose rate (UHDR) radiation therapy (RT), known as FLASH-RT. When compared to RT delivered
at conventional dose rates (C-RT), FLASH-RT has been shown to inflict lower radiobiological damage to normal
tissues while still preserving the same tumor killing efficacy. This enhanced selectivity has become known as the
‘FLASH’ effect. Oxygen (O2) has been suggested to underpin the FLASH effect, with several theories centered
on increased consumption of oxygen upon application of UHDR radiation. However, our in vitro and in vivo
oxygen measurements using the phosphorescence quenching method were the first to show that compared to
C-RT, FLASH-RT leads not to higher, but actually lower O2 consumption per unit radiation dose. Additionally,
we have been the first to establish that the oxygen consumption rate during FLASH-RT is dependent upon the
baseline oxygen level within tissue, indicating that the oxygen fixation effect may be oxygen dependent. Based
on these results, we hypothesize that the FLASH effect originates not from fast depletion of oxygen and
radiobiological hypoxia, but rather from a dose rate dependent oxygen enhancement ratio (OER) from
differences in oxygen consumption and damage fixation between FLASH-RT vs C-RT. This original hypothesis
can be tested only with accurate measurement of the acute change in oxygen partial pressure (pO2), as an
indirect biomarker of the oxygen fixation happening. If this is via variation in peroxyl formation, measurement of
pO2 is an ideal surrogate of changes in DNA damage from variations in dose rate delivery parameters. In this
project we will develop a unique high-resolution O2 imaging method to track and optimize the FLASH efficacy by
combining phosphorescence quenching oximetry in vivo with Cherenkov Excited Luminescence Imaging (CELI)
to dynamically quantify oxygen in tissues with spatial resolution of ~1 mm. In CELI, X-ray beams of RT generate
localized optical field, which excites phosphorescence deep within tissues, and the phosphorescence, imaged
with external detectors, reflects tissue oxygenation. This work will pioneer a new approach to oxygen
measurements in RT and will provide mechanistic insight into FLASH radiochemistry with the important potential
to optimize the radiobiological efficacy of FLASH-RT. The teams and resources at Wisconsin, Dartmouth and
UPenn are unparalleled in their experimental potential for this project, and the work will provide fundamentally
new capabilities in guidance of RT, with guidance by key consultants. The components of our work have been
based upon high impact publication of original in vivo data with both electrons and protons. The fundamental
insights that can be gained here are very timely, as the search for the origins of the FLASH effect in normal
tissue is happening now. As we find ways to understand the mechanisms, that can help us optimize its effect,
and test the dose rate beam delivery and oxygenation conditions for tissues that lead to its optimization.
项目摘要
高精度和高空间定位的氧传感可以为作用和效果提供新的见解
与 RT 相比,超高剂量率 (UHDR) 放射治疗 (RT),称为 FLASH-RT。
在常规剂量率 (C-RT) 下,FLASH-RT 已被证明对正常组织造成的放射生物学损伤较低
组织,同时仍保留相同的肿瘤杀伤功效,这种增强的选择性已被称为“
“闪光”效应被认为是闪光效应的基础,有多种理论。
然而,我们的体外和体内研究表明,应用 UHDR 辐射后氧气消耗量会增加。
使用磷光猝灭方法进行的氧测量首次表明,与
另外,C-RT、FLASH-RT 不会导致单位辐射剂量的氧气消耗量更高,但实际上会降低。
我们是第一个确定 FLASH-RT 期间的耗氧率取决于
组织内的基线氧水平,表明氧固定效应可能是基于氧的。
根据这些结果,我们发现 FLASH 效应并非源于氧气的快速消耗,并且
放射生物学缺氧,而是来自剂量率依赖性氧增强比(OER)
FLASH-RT 与 C-RT 之间耗氧量和损伤固定的差异 这是最初的假设。
只能通过准确测量氧分压 (pO2) 的急剧变化来进行测试,作为
氧固定发生的间接生物标志物如果这是通过过氧化氢形成的变化来测量的。
pO2 是剂量率传递参数变化引起的 DNA 损伤变化的理想替代指标。
在该项目中,我们将开发一种独特的高分辨率 O2 成像方法,通过以下方式跟踪和优化 FLASH 功效:
将体内磷光猝灭血氧定量法与切伦科夫激发发光成像 (CELI) 相结合
在 CELI 中,RT 生成 X 射线束,以动态量化组织中的氧气,空间分辨率约为 1 毫米。
局部光场,激发组织深处的磷光,并将磷光成像
与外部探测器,反映组织氧合,这项工作将开创一种新的氧气方法。
RT 中的测量,将为 FLASH 放射化学提供机制洞察,具有重要的潜力
优化 FLASH-RT 的放射生物学功效 威斯康星州、达特茅斯和
宾夕法尼亚大学在这个项目上的实验潜力是无与伦比的,这项工作将从根本上提供
在主要顾问的指导下,RT 的新能力已成为我们工作的组成部分。
基于电子和质子的原始体内数据的高影响力出版物。
在这里可以获得的见解非常及时,因为在正常情况下寻找 FLASH 效应的起源
当我们找到了解其机制的方法时,这可以帮助我们优化其效果,
并测试组织的剂量率射束传输和氧合条件,以实现其优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian W. Pogue其他文献
Onward to better surgery - the critical need for improved ex vivo testing and training methods
迈向更好的手术——迫切需要改进体外测试和训练方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eric R. Henderson;Ryan Halter;Keith D. Paulsen;Brian W. Pogue;Jonathan T. Elliott;Ethan M. LaRochelle;Alberto Ruiz;Shudong Jiang;S. Streeter;K. Samkoe;Summer L. Gibbs - 通讯作者:
Summer L. Gibbs
Automated classification of breast pathology using local measures of broadband reflectance
使用宽带反射率的局部测量对乳腺病理进行自动分类
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ashley M. Laughney;V. Krishnaswamy;Pilar Beatriz;Olga M. Conde;W. Wells;Keith D Paulsen;Brian W. Pogue - 通讯作者:
Brian W. Pogue
Tunable phosphorescent hydrogels for Cherenkov-excited luminescence imaging (CELI) of oxygen
用于氧气切伦科夫激发发光成像(CELI)的可调谐磷光水凝胶
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Simin Belali;Marien Iliza Ochoa Mendoza;Matthew S. Reed;Annemarie Lang;J. Boerckel;Brian W. Pogue;Sergei A. Vinogradov - 通讯作者:
Sergei A. Vinogradov
Sampling of time- and frequency-domain signals in monte carlo simulations of photon migration.
光子迁移蒙特卡罗模拟中时域和频域信号的采样。
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:1.9
- 作者:
Markus Testorf;Ulf Österberg;Brian W. Pogue;Keith D Paulsen - 通讯作者:
Keith D Paulsen
Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging.
近红外断层乳腺成像体内吸收和散射异质性的初步研究。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:3.6
- 作者:
T. O. McBride;Brian W. Pogue;Shudong Jiang;Ulf Österberg;Keith D Paulsen;S. Poplack - 通讯作者:
S. Poplack
Brian W. Pogue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian W. Pogue', 18)}}的其他基金
Cerenkov excited luminescence sheet imaging (CELSI)
切伦科夫激发发光片成像 (CELSI)
- 批准号:
9536812 - 财政年份:2017
- 资助金额:
$ 54.11万 - 项目类别:
Cerenkov excited luminescence sheet imaging (CELSI)
切伦科夫激发发光片成像 (CELSI)
- 批准号:
9923639 - 财政年份:2017
- 资助金额:
$ 54.11万 - 项目类别:
Direct and Repeated Clinical Measurement of pO2 for Enhancing Cancer Therapy
直接和重复的 pO2 临床测量可增强癌症治疗
- 批准号:
9514093 - 财政年份:2015
- 资助金额:
$ 54.11万 - 项目类别:
Cerenkov Tomography of 4D Radiation Therapy Plans
4D 放射治疗计划的切伦科夫断层扫描
- 批准号:
8643920 - 财政年份:2013
- 资助金额:
$ 54.11万 - 项目类别:
Cerenkov Tomography of 4D Radiation Therapy Plans
4D 放射治疗计划的切伦科夫断层扫描
- 批准号:
8738665 - 财政年份:2013
- 资助金额:
$ 54.11万 - 项目类别:
2012 Lasers in Medicine and Biology - Gordon Research Conference
2012 年激光在医学和生物学中的应用 - 戈登研究会议
- 批准号:
8252501 - 财政年份:2012
- 资助金额:
$ 54.11万 - 项目类别:
相似国自然基金
“微生物-肠-脑轴”调节抑郁症睡眠障碍的机制及其作为rTMS治疗效果预测的生物标志物研究
- 批准号:82371928
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
难治性抑郁症脑深部电刺激临床干预及生物标志物研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于化学衍生化-亲和吸附-质谱技术研究新生儿缺血缺氧性脑病预后生物标志物
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
近红外聚集诱导增强四苯乙烯类纳米材料电致化学发光超灵敏脑癌标志物生物传感器及生物成像研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
阿尔茨海默病血浆外泌体生物标志物表达与多模态脑影像交叉研究
- 批准号:81911520406
- 批准年份:2019
- 资助金额:4.55 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Role of Gastrointestinal GCPII in Visceral Pain Signaling
胃肠道 GCPII 在内脏疼痛信号传导中的作用
- 批准号:
10678103 - 财政年份:2023
- 资助金额:
$ 54.11万 - 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 54.11万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 54.11万 - 项目类别:
Role of KCTD proteins in striatal signaling
KCTD 蛋白在纹状体信号传导中的作用
- 批准号:
10734241 - 财政年份:2023
- 资助金额:
$ 54.11万 - 项目类别:
Immune Modulation During Acute Lyme Disease Infection as the Result of Aberrant Immunoglobulin Glycosylation
异常免疫球蛋白糖基化导致急性莱姆病感染期间的免疫调节
- 批准号:
10726417 - 财政年份:2023
- 资助金额:
$ 54.11万 - 项目类别: