Molecular and kinetic gating mechanisms of SK channels
SK通道的分子和动力学门控机制
基本信息
- 批准号:7275559
- 负责人:
- 金额:$ 5.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectAmino AcidsAmmoniumBehaviorBindingBiophysicsBrainBrain regionC-terminalCalciumCalcium ChannelCalcium Channel BindingCalcium SignalingCalcium-Activated Potassium ChannelCalmodulinCyclic NucleotidesCysteineDataDependenceDimerizationDoseDrug DesignFamilyFire - disastersHandHelix (Snails)Hydrophobic InteractionsHydrophobicityIon ChannelKineticsKnowledgeLeadLinkLobeLocationMediatingModificationMolecularMutateMutationNeuraxisNeurologicNeuronsNumbersParkinson DiseasePatternProbabilityPropertyProtocols documentationRangeRoentgen RaysSchizophreniaSeriesShapesSideSignal TransductionSiteStructureSynapsesSynaptic plasticityTestingTherapeuticTransmembrane Domainbasecalcium-activated potassium channel small-conductancecrosslinkcyclic-nucleotide gated ion channelsdesigndimerear helixextracellularlarge-conductance calcium-activated potassium channelsmotor controlnervous system disorderresearch studysizevoltage
项目摘要
DESCRIPTION (provided by applicant): The overall objective of this application is to understand the molecular and kinetic gating mechanisms of small-conductance, calcium-activated potassium channels (SK channels). The SK channels participate in calcium signaling, electrical signaling and synaptic plasticity in the brain. They are potential molecular substrates for treating diseases of the nervous system such as Parkinson's disease and Schizophrenia. Understanding the gating mechanisms of the SK channels will provide specific knowledge about how these molecules can be manipulated in a therapeutic setting.
I propose experiments for two specific aims. The first aim is to probe the inner pore properties and gate location of SK channels with intracellular blockers. I will characterize in detail dose-dependent activation of SK channels by calcium and dose- and voltage-dependent blockade by a series of quaternary ammonium blockers. Comparisons between blockers of different sizes and hydrophobicity will provide information about the properties and size of the SK channel pore. Correlation between doses of calcium (or open probability in single-channel recordings) and block efficiency will reveal possible links between the state of the channel (open or closed) and accessibility of the pore to the blockers. State-dependence of such accessibility would suggest an intracellular gate location. On the other hand, if the accessibility of the pore is state-independent, this would suggest a gate location above the blocking site. The second aim is to test the hypothesis that dimerization of the C termini of SK channels by calcium-bound calmodulin stabilizes the open state. I plan to make mutations of the SK channel with predictable results based on structural data. One set of mutations will be cysteine substitutions for residues with short inter-subunit distance in the dimmer structure. If the dimer structure is associated with an open channel, cross-linking these residues should lock the channel in the open state. Another set of mutations will target the hydrophobic interactions between the SK channel and the N-lobe of calmodulin in the dimer structure. Hydrophobic residues in the SK channel will be mutated to polar residues, which are expected to weaken the interaction and destabilize the dimer. This should lead to a reduced efficiency of calcium activation of the channel.
描述(由申请人提供):本应用的总体目的是了解小导,钙激活的钾通道(SK通道)的分子和动力学门控机制。 SK通道参与大脑中的钙信号传导,电信号传导和突触可塑性。它们是治疗神经系统疾病(例如帕金森氏病和精神分裂症)的潜在分子底物。了解SK通道的门控机制将提供有关在治疗环境中如何操纵这些分子的特定知识。
我提出了两个特定目标的实验。第一个目的是探测具有细胞内阻滞剂SK通道的内部孔特性和门位置。我将通过一系列第四纪铵阻滞剂来详细表征SK通道对SK通道的剂量依赖性激活。不同大小和疏水性的阻滞剂之间的比较将提供有关SK通道孔的性质和大小的信息。钙剂量(或单渠道记录中的开放概率)与阻滞效率之间的相关性将揭示通道状态(开放或封闭)之间的可能链接以及孔与阻滞剂的可及性。这种可及性的状态依赖性将表明细胞内门位置。另一方面,如果孔的可访问性是与州无关的,这将表明阻塞位点上方的门位置。第二个目的是检验以下假设:通过钙结合的钙调蛋白稳定开放状态,通过钙结合的钙调蛋白二聚化。我计划根据结构数据进行可预测结果的SK通道突变。一组突变将是对昏暗者结构中产生距离短的残基的半胱氨酸取代。如果二聚体结构与开放通道关联,则将这些残基的交联应以开放状态锁定通道。另一组突变将针对二聚体结构中SK通道和钙调蛋白的N-叶片之间的疏水相互作用。 SK通道中的疏水残基将被突变为极性残基,这些残基有望削弱相互作用并破坏二聚体的稳定。这应该导致通道的钙激活效率降低。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xixi Chen其他文献
Xixi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xixi Chen', 18)}}的其他基金
Molecular and kinetic gating mechanisms of SK channels
SK通道的分子和动力学门控机制
- 批准号:
7596191 - 财政年份:2007
- 资助金额:
$ 5.13万 - 项目类别:
Molecular and kinetic gating mechanisms of SK channels
SK通道的分子和动力学门控机制
- 批准号:
7413660 - 财政年份:2007
- 资助金额:
$ 5.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别: