Anion channelrhodopsin-based viral tools to manipulate brain networks in behaving animals
基于阴离子通道视紫红质的病毒工具可操纵行为动物的大脑网络
基本信息
- 批准号:9321918
- 负责人:
- 金额:$ 95.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-21 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgaeAnimalsAnionsBehaviorBrainCationsCellsCloningCognitiveColorComplexDecision MakingDiseaseDissectionEffectivenessElectrophysiology (science)ExhibitsGene DeliveryGenerationsGenesGlutamatesGoalsHumanIn SituIndividualInjectableInjection of therapeutic agentKineticsLightLightingMacaca mulattaMammalsMembrane PotentialsMental disordersMethodsModelingMolecularMolecular ProfilingMonkeysMusNeuronsNeurosciencesOpsinOpticsPatternPhotosensitivityPhysiologicalPopulationPrimatesProceduresProcessProductionPropertyProtein EngineeringProtocols documentationPsyche structureRecoveryResearchResearch Project GrantsRhodopsinRoleScientistSensorySodiumSpecificitySystemTechniquesTestingViralViral VectorVisualarea striatabasebehavior influencebrain tissuecell typecognitive functioncognitive processexcitatory neuronexpression vectorextracellularimprovedinformation processinginhibitory neuroninterestmouse modelnervous system disorderneural circuitneuronal survivalnonhuman primatenoveloptogeneticspatch clamppromoterpublic health relevancerate of changerelating to nervous systemresponseselective expressiontoolvector
项目摘要
DESCRIPTION (provided by applicant): Examining neural circuits crucially relies on the ability to activate or silence individual circuit components to subsequently assess their impact on other parts of the circuit and their influence on behavior. Recent refinements of viral tools for gene delivery have allowed optogenetic methods to target cells based on specific cell types, localization, and connectivity. The physiological dissection of targeted circuits has been extremely successful in the mouse brain, but remains of limited use in non-human primate brain. We plan to develop and test a new generation of viral tools that will allow us to both activate and
suppress different cell types in non-human primate models. To accomplish our aims we have assembled an expert team with complementary expertise composed of a biochemist and photobiologist (John Spudich), a molecular neuroscientist (Roger Janz), and a systems and computational neuroscientist (Valentin Dragoi). Our approach builds upon recently discovered anion-conducting channelrhodopsins (ACRs), which perform with perfect anion selectivity, photosensitivity orders of magnitude greater than current optogenetic rhodopsins, and enable highly efficient neuron hyperpolarization. We believe that our ACR constructs will open a new chapter in targeted neuro-suppression. In addition, we will use new neuron-activating (depolarizing) cation-conducting channelrhodopsins (CCRs) that have ~3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than the commonly used channelrhodopsin-2. We will construct viral vectors encoding ACR-CCR pairs and, using spectrally different ACRs, ACR-ACR pairs, enabling efficient wavelength-selected neuron activation or suppression in large populations. The effectiveness of these viral vectors will be tested in cultured and in situ mouse neurons and in the primary visual cortex (V1) of behaving monkeys. Developing these powerful tools will be invaluable for probing neural circuits in non-human primate models, finally allowing the interrogation of microcircuits underlying primate cognitive function.
描述(由申请人提供):检查神经回路主要依赖于激活或沉默单个回路组件的能力,以随后评估它们对回路其他部分的影响以及它们对行为的影响,最近对基因传递病毒工具的改进已经允许光遗传学。基于特定细胞类型、定位和连接性的目标细胞递送方法在小鼠大脑中非常成功,但在非人类灵长类动物大脑中的应用仍然有限。新一代病毒工具将使我们能够激活和
为了实现我们的目标,我们组建了一个具有互补专业知识的专家团队,由生物化学家和光生物学家 (John Spudich)、分子神经科学家 (Roger Janz) 以及系统和计算神经科学家 (Roger Janz) 组成。 Valentin Dragoi)。我们的方法建立在最近发现的阴离子传导通道视紫红质(ACR)的基础上,它具有完美的阴离子选择性,光敏度比现有的高几个数量级。我们相信,我们的 ACR 构建体将开启靶向神经抑制的新篇章。此外,我们将使用具有新的神经元激活(去极化)阳离子传导通道视紫红质(CCR)。比常用的视紫红质通道蛋白-2 具有大约 3 倍的单位电导、更快的激发恢复和更高的钠选择性。 ACR-CCR 对,以及使用光谱不同的 ACR、ACR-ACR 对,可以在大量群体中实现有效的波长选择神经元激活或抑制。这些病毒载体的有效性将在培养和原位小鼠神经元以及初级视觉中进行测试。开发这些强大的工具对于探测非人类灵长类动物模型中的神经回路非常有价值,最终可以探究灵长类动物认知功能的微回路。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integration of cortical population signals for visual perception.
整合皮质群体信号以实现视觉感知。
- DOI:
- 发表时间:2019-08-23
- 期刊:
- 影响因子:16.6
- 作者:Andrei, Ariana R;Pojoga, Sorin;Janz, Roger;Dragoi, Valentin
- 通讯作者:Dragoi, Valentin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VALENTIN DRAGOI其他文献
VALENTIN DRAGOI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VALENTIN DRAGOI', 18)}}的其他基金
Neural coding of natural stimuli in freely moving macaque
自由移动猕猴自然刺激的神经编码
- 批准号:
10524592 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Cortical encoding of unconscious visual information and its impact on behavior
无意识视觉信息的皮质编码及其对行为的影响
- 批准号:
10653902 - 财政年份:2020
- 资助金额:
$ 95.18万 - 项目类别:
Cortical encoding of unconscious visual information and its impact on behavior
无意识视觉信息的皮质编码及其对行为的影响
- 批准号:
10256012 - 财政年份:2020
- 资助金额:
$ 95.18万 - 项目类别:
Cortical encoding of unconscious visual information and its impact on behavior
无意识视觉信息的皮质编码及其对行为的影响
- 批准号:
10440471 - 财政年份:2020
- 资助金额:
$ 95.18万 - 项目类别:
The Impact of Sleep on Network Coding and Perceptual Performance
睡眠对网络编码和感知性能的影响
- 批准号:
10543110 - 财政年份:2016
- 资助金额:
$ 95.18万 - 项目类别:
The Impact of Sleep on Network Coding and Perceptual Performance
睡眠对网络编码和感知性能的影响
- 批准号:
10392202 - 财政年份:2016
- 资助金额:
$ 95.18万 - 项目类别:
The Impact of Sleep on Network Coding and Perceptual Performance
睡眠对网络编码和感知性能的影响
- 批准号:
9565710 - 财政年份:2016
- 资助金额:
$ 95.18万 - 项目类别:
Administrative Supplement: Anion channelrhodopsin-based viral tools to manipulate brain networks in behaving animals
行政补充:基于阴离子通道视紫红质的病毒工具可操纵行为动物的大脑网络
- 批准号:
9268890 - 财政年份:2016
- 资助金额:
$ 95.18万 - 项目类别:
Examining Population Coding Underlying Complex Behavior in Freely Moving Primates
检查自由活动的灵长类动物复杂行为背后的群体编码
- 批准号:
7979898 - 财政年份:2010
- 资助金额:
$ 95.18万 - 项目类别:
相似国自然基金
栅藻诱导型防御的权衡策略与代价分析
- 批准号:31470508
- 批准年份:2014
- 资助金额:88.0 万元
- 项目类别:面上项目
藻类的诱发性反牧食防御对二氧化碳水平和温度上升的响应及其生态意义
- 批准号:31270504
- 批准年份:2012
- 资助金额:81.0 万元
- 项目类别:面上项目
城镇溪流底栖藻类和底栖动物群落的退化规律与机制研究- - 以钱塘江中上游流域为例
- 批准号:40971280
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
富营养湖泊藻类水华控制中微型浮游动物的操纵机制
- 批准号:30570343
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:面上项目
从微体藻类中探索动物生长因子的新来源
- 批准号:39170398
- 批准年份:1991
- 资助金额:4.0 万元
- 项目类别:面上项目
相似海外基金
2023 Mycotoxins and Phycotoxins Gordon Research Conference and Seminar
2023年霉菌毒素和藻类毒素戈登研究会议暨研讨会
- 批准号:
10753810 - 财政年份:2023
- 资助金额:
$ 95.18万 - 项目类别:
Biosynthesis of marine terpenoid natural products
海洋萜类天然产物的生物合成
- 批准号:
10737210 - 财政年份:2023
- 资助金额:
$ 95.18万 - 项目类别:
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10688147 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Mechanisms of microcystin-induced hepatocellular carcinoma in nonalcoholic steatohepatitis
非酒精性脂肪性肝炎微囊藻毒素诱发肝细胞癌的机制
- 批准号:
10116789 - 财政年份:2021
- 资助金额:
$ 95.18万 - 项目类别:
Mechanisms of microcystin-induced hepatocellular carcinoma in nonalcoholic steatohepatitis
非酒精性脂肪性肝炎微囊藻毒素诱发肝细胞癌的机制
- 批准号:
10330468 - 财政年份:2021
- 资助金额:
$ 95.18万 - 项目类别: