Defining architecture of EC coupling machinery in situ
现场定义 EC 耦合机械的架构
基本信息
- 批准号:10711223
- 负责人:
- 金额:$ 20.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectArchitectureBindingBiochemicalCell membraneCellular MembraneCentral Core MyopathyComplexContractile ProteinsCoupledCouplingCrowdingCryoelectron MicroscopyCytoplasmDataData CollectionDefectDetergentsDihydropyridine ReceptorsDisease modelElectronsElementsEnvironmentEventFoundationsFreezingFunctional disorderFutureGeometryGoalsHydration statusHypokalemic periodic paralysisImageImage AnalysisImpairmentIn SituIntegral Membrane ProteinIonsKnowledgeLinkLipid BilayersLocationMalignant hyperpyrexia due to anesthesiaMeasurementMembraneMembrane LipidsMethodologyMolecularMorphologic artifactsMultiminicore diseaseMultiprotein ComplexesMuscleMuscle CellsMuscle ContractionMuscle FibersMutationMyopathyNeuromuscular DiseasesOutcomePathologicPharmaceutical PreparationsPhysiologicalPositioning AttributePreparationProcessProteinsReceptor GeneRegulationResearchResolutionRyanodine Receptor Calcium Release ChannelSamplingSarcoplasmic ReticulumSeriesSignal TransductionSkeletal MuscleStructureTechniquesThickTomogramVisualizationconvolutional neural networkcryogenicsdrug discoveryelectron tomographygenetic regulatory proteininsightnew therapeutic targetparticlepreservationprotein complexprotein protein interactionreconstructionstructural determinantsthree dimensional structuretomographyvoltage
项目摘要
Project Summary/Abstract
The focus of this proposal is on excitation-contraction coupling (ECC) in skeletal muscle. The ECC consists of a
series of physiological events linking the depolarization of muscle cell’s plasma membrane to the release of Ca2+
from the sarcoplasmic reticulum (SR) into cytoplasm, resulting in muscle contraction. ECC is restricted spatially
to a subcompartment of muscle cells (‘triad junction’) and regulated precisely via a physical interaction between
the voltage-gated Ca2+ channel (dihydropyridine receptor, DHPR) on the plasma membrane and the Ca2+-release
channel (type 1 ryanodine receptor, RyR1) in the SR. Many drugs currently in use to treat muscle disorders
target these two Ca2+ channels. Despite recent remarkable advances in the structural characterization of these
two channels, the molecular mechanisms underlying their interactions remain elusive due to the lack of detailed
3D architecture of the ECC machinery comprising both channels and associated regulatory proteins. Determining
architecture of such multiprotein complexes is a formidable challenge given their native location in lipid
membranes and the lack a general means to preserve the complex integrity upon extraction with detergents from
their lipid bilayer environment. In this project, we will address this challenge by utilizing advanced cryogenic
electron tomography (cryoET) to study frozen-hydrated triad junctions isolated from skeletal muscle (aim 1) as
well as within myotubes cultured on EM grids (aim 2). To accomplish these studies, we endeavor to develop the
experimental workflow for in situ cryoET analysis of the ECC complex. This workflow will consist of the following
major steps: preparation of the membrane-embedded ECC complexes suitable for cryoET analysis; cryoET data
collection, image analysis, tomographic reconstruction and subtomogram averaging; visualization and
annotation of densities in cryo-tomograms. The determined structures will reveal mechanistically informative
features underlying protein-protein interactions in the ECC Ca2+ release complex that will allow important
functional insights into the ECC process. In the future, we will apply the workflow developed here to structure-
functional characterization of ECC in different types of muscle and under pathological conditions. Overall, the
proposed studies are highly significant, as they will provide mechanistic structural insights into the ECC
machinery illuminating the pathological consequences of deregulated Ca2+ signaling, that will ultimately aid in
search for novel therapies targeting neuromuscular diseases. The workflow developed, as part of this research
will have broad applicability to studies of other integral membrane protein complexes.
项目摘要/摘要
该提议的重点是骨骼肌中的兴奋反应耦合(ECC)。 ECC由
将肌肉细胞的质膜沉积与Ca2+释放联系起来的一系列物理事件
从肌质网(SR)到细胞质,导致肌肉收缩。 ECC在空间上受到限制
到肌肉细胞(“三合会连接”)的子组门,并通过物理相互作用进行调节
质膜上的电压门控Ca2+通道(Dihydropyine受体,DHPR)和Ca2+ release
SR中的通道(1型Ryanodine受体,RYR1)。目前使用的许多药物用于治疗肌肉障碍
靶向这两个CA2+通道。尽管最近在这些结构表征上取得了显着进步
两个通道,由于缺乏细节,其相互作用的分子机制仍然难以捉摸
ECC机械的3D结构完成了两个通道和相关调节蛋白。确定
鉴于其本地位置在脂质中
机制和缺乏一般的手段,可以在提取时保留复杂的完整性,从而确定
他们的脂质双层环境。在这个项目中,我们将通过使用高级低温来应对这一挑战
电子断层扫描(冷冻)研究从骨骼肌中分离出的冷冻水合的三合会(AIM 1)
以及在EM网格上培养的Myotube中(AIM 2)。为了完成这些研究,我们努力发展
对ECC复合物的原位冷冻分析的实验工作流程。此工作流将包括以下
主要步骤:制备适合冷冻分析的膜包裹的ECC复合物;冷冻数据
收集,图像分析,层析成像重建和亚图平均;可视化和
冷冻图中密度的注释。确定的结构将揭示机械信息丰富
ECC CA2+释放复合物中的蛋白质 - 蛋白质相互作用的基础特征,该复合物将允许重要
对ECC过程的功能见解。将来,我们将在此处运用此处开发的工作流程 - 结构 -
在不同类型的肌肉和病理条件下,ECC的功能表征。总体而言,
拟议的研究非常重要,因为它们将为ECC提供机械性结构见解
机械阐明了放松管制的CA2+信号传导的病理后果,这最终将有助于
寻找针对神经肌肉疾病的新型疗法。作为这项研究的一部分,开发了工作流程
将广泛适用于对其他积分膜蛋白复合物的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina I Serysheva其他文献
Irina I Serysheva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irina I Serysheva', 18)}}的其他基金
ACQUISITION OF HIGH-THROUGHPUT 200 kV CRYO-TEM
获取高通量 200 kV 冷冻透射电镜
- 批准号:
10415650 - 财政年份:2022
- 资助金额:
$ 20.59万 - 项目类别:
INOSITOL 1,4,5 TRIPHOSPHATE RECEPTOR (IP3R)
肌醇 1,4,5 三磷酸受体 (IP3R)
- 批准号:
8361062 - 财政年份:2011
- 资助金额:
$ 20.59万 - 项目类别:
INOSITOL 1,4,5 TRIPHOSPHATE RECEPTOR (IP3R)
肌醇 1,4,5 三磷酸受体 (IP3R)
- 批准号:
8168532 - 财政年份:2010
- 资助金额:
$ 20.59万 - 项目类别:
Structural type 1 inositol 1,4,5-trisphosphate receptor
结构类型 1 肌醇 1,4,5-三磷酸受体
- 批准号:
8017879 - 财政年份:2010
- 资助金额:
$ 20.59万 - 项目类别:
INOSITOL 1,4,5 TRIPHOSPHATE RECEPTOR (IP3R)
肌醇 1,4,5 三磷酸受体 (IP3R)
- 批准号:
7953760 - 财政年份:2008
- 资助金额:
$ 20.59万 - 项目类别:
INOSITOL 1,4,5 TRIPHOSPHATE RECEPTOR (IP3R)
肌醇 1,4,5 三磷酸受体 (IP3R)
- 批准号:
7721131 - 财政年份:2007
- 资助金额:
$ 20.59万 - 项目类别:
INOSITOL 1,4,5 TRIPHOSPHATE RECEPTOR (IP3R)
肌醇 1,4,5 三磷酸受体 (IP3R)
- 批准号:
7598589 - 财政年份:2006
- 资助金额:
$ 20.59万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别: