Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
基本信息
- 批准号:9271261
- 负责人:
- 金额:$ 31.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAgingAmino AcidsArginineAtaxiaBacteriaBrainCell DeathCerebellar degenerationCessation of lifeCodon NucleotidesComplementComplexComputer SimulationComputing MethodologiesCritical PathwaysDataDefectDevelopmentDiseaseEconomic BurdenEventFailureFunctional disorderGTPBP1 geneGenesGeneticGenetic TranslationGenomicsGrowthGuanosine Triphosphate PhosphohydrolasesHereditary DiseaseHippocampus (Brain)HomeostasisHuman GeneticsLeadLocationMammalian CellMammalsMessenger RNAModelingMolecularMouse StrainsMusMutant Strains MiceMutationNerve DegenerationNeurodegenerative DisordersNeuronsOrganPathologyPathway interactionsPeptidesPhenotypePositioning AttributeProcessProtein BiosynthesisProteinsRecyclingRegulationResearchResolutionRibosomesSpecificitySpeedStructureSystemTP53 geneTerminator CodonTestingTransfer RNATransfer RNA AminoacylationTranslatingTranslation ProcessTranslationsUnited StatesWorkYeastsage effectagedaging brainaging populationexperimental studygenetic approachgenetic informationgranule cellhuman diseasemouse modelnervous system disorderneuron lossnovelparalogous genepublic health relevancerelease factorretinal neuronsimulationtranscriptome sequencingtransmission process
项目摘要
DESCRIPTION (provided by applicant): Neurodegenerative disorders affect many millions of people around the world, particularly in the aging population. The vast majority of these diseases are not familial and the mutations that have been associated with rare familial forms of these disorders underscore the complexity of this group of diseases. To begin to understand this complexity, we have used forward genetic approaches to pinpoint the molecular pathways that maintain neuronal homeostasis in the aging mammalian brain. Using this approach we recently demonstrated that unresolved ribosome stalling is a novel mechanism for neurodegeneration. Despite the fundamental importance of translation, the cellular consequences of ribosome stalling in mammalian cells had been unknown until our discovery that a mutation in a novel mammalian ribosome rescue factor Gtpbp2 causes ataxia and degeneration of cerebellar granule cells, cortical and hippocampal neurons, and multiple retinal neurons. Importantly we demonstrated that loss of Gtpbp2 epistatically interacts with a mutation in a CNS- specific, cytoplasmic tRNAArgUCU in the widely used C57BL6/J (B6J) mouse strain to cause neurodegeneration. Our ribosome footprinting experiments revealed that loss of this tRNA led to low levels of ribosome stalling at Arginine AGA codons that was not associated with neurodegeneration. However, stalling was dramatically increased in the absence of Gtpbp2, demonstrating that this protein normally resolves ribosomal stalls. In this application we propose to determine the function of these and other ribosome rescue factors in neuron survival, the impact of increasing age on ribosome stalling in the brain, and additional molecular mechanisms which cause ribosome stalling in mammalian neurons. In Aim 1 we will determine the effects of loss of the ribosome rescue factors Gtpbp1, Hbs1l, and Pelo with- and without- tRNA deficiency. These studies will be complemented by novel computational methods to infer ribosomal locations at increased precision and ascertain mechanisms that distinguish strains using parameter-dependent simulations of the translation process. In Aim 2 we will determine the effects of aging on ribosome stalling and neurodegeneration in the brains of aged wild type and ribosome rescue mutant mice without the tRNA mutation and generate and analyze ribosome footprinting and RNA-Seq data from cerebella of aged mice. In Aim 3 we will investigate pathways that lead to cell death and determine their uniqueness for neurons. We will determine if deficiency of ubiquitously expressed tRNAs induces ribosome stalling and pathology in other organs, analyze the effects of the GCN2/ATF4 and P53 pathways on neurodegeneration, and identify additional modifier genes of neurodegeneration in Gtpbp2-/- mice. Together, we expect these studies to reveal the mechanisms by which dysregulation of translation elongation leads to cellular death and their specificity for neurodegenerative disease.
描述(由申请人提供):神经退行性疾病影响着世界各地数百万人,特别是老龄化人口。这些疾病绝大多数不是家族性的,与这些疾病的罕见家族形式相关的突变强调了其复杂性。为了开始了解这一组疾病的复杂性,我们使用正向遗传学方法来查明维持衰老哺乳动物大脑中神经元稳态的分子途径,我们最近证明了未解决的核糖体停滞。尽管翻译具有根本重要性,但在我们发现一种新型哺乳动物核糖体救援因子 Gtpbp2 的突变导致小脑颗粒细胞、皮质细胞的共济失调和变性之前,哺乳动物细胞中核糖体停滞的细胞后果一直是未知的。重要的是,我们证明 Gtpbp2 的缺失与 CNS 特异性细胞质中的突变相互作用。在广泛使用的 C57BL6/J (B6J) 小鼠品系中,tRNAArgUCU 会导致神经变性。我们的核糖体足迹实验表明,这种 tRNA 的丢失会导致精氨酸 AGA 密码子处的核糖体停滞水平较低,但这种停滞与神经变性无关。在没有 Gtpbp2 的情况下增加,证明该蛋白质通常可以解决核糖体失速问题。在本应用中,我们建议确定这些和其他蛋白的功能。神经元存活中的核糖体救援因素、年龄增长对大脑中核糖体停滞的影响以及导致哺乳动物神经元核糖体停滞的其他分子机制在目标 1 中,我们将确定核糖体救援因子 Gtpbp1、Hbs1l 丢失的影响。这些研究将得到新的计算方法的补充,以提高精度推断核糖体位置,并确定使用参数依赖性区分菌株的机制。在目标 2 中,我们将确定衰老对衰老野生型和核糖体拯救突变小鼠(没有 tRNA 突变)大脑中核糖体停滞和神经变性的影响,并生成和分析来自小脑的核糖体足迹和 RNA-Seq 数据。在目标 3 中,我们将研究导致细胞死亡的途径并确定其对神经元的独特性。我们将确定普遍表达的 tRNA 的缺乏是否会诱导核糖体。我们期望这些研究能够揭示翻译失调的机制。伸长导致细胞死亡及其对神经退行性疾病的特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN L ACKERMAN其他文献
SUSAN L ACKERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN L ACKERMAN', 18)}}的其他基金
Transfer RNAs in Hematopoietic Stem Cell Function
造血干细胞功能中的转移 RNA
- 批准号:
10735318 - 财政年份:2023
- 资助金额:
$ 31.14万 - 项目类别:
The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
- 批准号:
10550207 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
- 批准号:
10366550 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9213291 - 财政年份:2016
- 资助金额:
$ 31.14万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9126621 - 财政年份:2016
- 资助金额:
$ 31.14万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9006366 - 财政年份:2015
- 资助金额:
$ 31.14万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 31.14万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 31.14万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 31.14万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 31.14万 - 项目类别: