The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
基本信息
- 批准号:10366550
- 负责人:
- 金额:$ 43.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:Absence EpilepsyAcuteAllelesAmino AcidsAnticodonAstrocytesBrainBrain regionBuffersCell DeathCell physiologyCellsChIP-seqChemicalsCodon NucleotidesDataDevelopmentDiseaseEpilepsyEpitopesEquilibriumEukaryotaFRAP1 geneFamilyFamily memberFutureGene ExpressionGene FamilyGenesGeneticGenetic TranscriptionGenetic TranslationGoalsHippocampus (Brain)HomeostasisHumanImpairmentIndividualInduced pluripotent stem cell derived neuronsInvestigationLaboratoriesLinkMaintenanceMessenger RNAMicrogliaModelingMolecularMusMutationNatureNerve DegenerationNeuronsNuclearPhenotypePhysiologicalPhysiologyPredispositionProcessPropertyProteinsRNA Polymerase IIIRegulationRibosomesRoleSeizuresSeveritiesSignal PathwaySignal TransductionSirolimusSmall RNASynapsesSynaptic TransmissionSynaptosomesTestingTissuesTranscriptTransfer RNATransgenic OrganismsTranslationsUnited StatesVariantVertebratesWild Type MouseWorkbasebiological adaptation to stresscell typedifferential expressionexcitatory neuronfrontiergenome-widegranule cellin vivoinhibitory neuronmTOR Inhibitormammalian genomemembermouse genomemouse modelnervous system disorderneuronal cell bodynovelnull mutationoverexpressionpatch clampresponserestorationtranscriptometransgene expressiontranslatome
项目摘要
PROJECT SUMMARY/ABSTRACT
Transfer RNAs (tRNAs) are critical adaptor molecules that physically link amino acids to codons, decoding mRNA
transcripts during translation. The mammalian genome contains hundreds of tRNA genes which are classified
into families based on their anticodon. Each family contains multiple tRNA genes, suggesting that these genes
may be buffered against the impact of deleterious mutations. Recently, we have demonstrated that a mutation
that impairs processing of n-Tr20, a tRNAArgUCU gene, or its complete loss, alters gene expression and
physiological responses at both the cellular and organismal level, despite the existence of four additional,
functional tRNAArgUCU genes in the mouse genome. More specifically, loss of this highly expressed, neuron-
specific member of the tRNAArgUCU family decreases the susceptibility of mice to seizures and alters the
excitatory-inhibitory balance in the hippocampus. Loss of n-Tr20 leads to ribosome stalling on cognate AGA
codons, along with changes in the transcriptional and translational landscape, characterized by decreased
mTORC1 signaling and activation of the integrated stress response. Transgenic overexpression of the other
members of the tRNAArgUCU family genes restored seizure susceptibility, in a manner which correlated with the
level of tRNA expression from the transgene, suggesting that the phenotypes in n-Tr20-/- mice are due to a
decrease in the tRNAArgUCU neuronal pool, to which n-Tr20 is the major contributor.
Our results provide the first demonstration that mutation of an individual member of a multicopy, nuclear-encoded
tRNA family can alter the molecular landscape and physiology of neurons and provide an impetus for future
investigations of tRNA mutations in the maintenance of cellular homeostasis and in disease. This proposal
expands upon our findings in several ways. In Aim 1, we will determine the cellular mechanisms underlying the
altered excitatory-inhibitory balance upon n-Tr20 loss by conditionally deleting n-Tr20 in either inhibitory or
excitatory neurons during or post-development. We will also investigate the effect of genetically increasing
mTOR signaling in n-Tr20-/- neurons on synaptic transmission. To further understand these physiological
changes, we will analyze the translatome in excitatory and inhibitory neurons of n-Tr20-/- and wild-type mice and
determine whether n-Tr20 deletion disrupts local translation. In Aim 2, we will test our hypothesis that phenotypes
derived from tRNA loss are due to the decreased level of the pool of tRNAs with the same anticodon, and we
will investigate whether the identity of the depleted tRNA family impacts these phenotypes. We will perform ChIP-
Seq from several major cell types in the brain, utilizing a novel mouse model that can conditionally express an
epitope-tagged allele of RNA Polymerase III. Based on this data, we will identify and delete other highly
expressed tRNAs and investigate the effect of their loss on major cell types in the mouse brain. Finally, we will
extend our work into humans by investigating the impact of tRNA loss on the translatome and physiology of
iPSC-derived neurons.
项目概要/摘要
转移 RNA (tRNA) 是关键的接头分子,可将氨基酸与密码子物理连接,解码 mRNA
翻译过程中的文字记录。哺乳动物基因组包含数百个 tRNA 基因,这些基因被分类为
根据反密码分为家庭。每个家族包含多个 tRNA 基因,表明这些基因
可以缓冲有害突变的影响。最近,我们证明了一种突变
损害 n-Tr20(一种 tRNAArgUCU 基因)的加工或其完全丧失,改变基因表达并
尽管存在另外四种,
小鼠基因组中的功能性 tRNAArgUCU 基因。更具体地说,这种高度表达的神经元的丢失
tRNAArgUCU 家族的特定成员可降低小鼠癫痫发作的易感性并改变
海马体的兴奋-抑制平衡。 n-Tr20 缺失导致核糖体在同源 AGA 上停滞
密码子,以及转录和翻译景观的变化,其特征是减少
mTORC1 信号传导和整合应激反应的激活。其他的转基因过度表达
tRNAArgUCU 家族基因的成员恢复了癫痫易感性,其方式与
转基因的 tRNA 表达水平,表明 n-Tr20-/- 小鼠的表型是由于
tRNAArgUCU 神经元库减少,其中 n-Tr20 是主要贡献者。
我们的结果首次证明多拷贝、核编码的个体成员的突变
tRNA家族可以改变神经元的分子结构和生理学,并为未来提供动力
研究维持细胞稳态和疾病中的 tRNA 突变。这个提议
以多种方式扩展了我们的发现。在目标 1 中,我们将确定潜在的细胞机制
通过有条件地删除抑制或抑制中的 n-Tr20,改变 n-Tr20 丢失时的兴奋性-抑制平衡
发育过程中或发育后的兴奋性神经元。我们还将研究基因增加的影响
n-Tr20-/- 神经元中 mTOR 信号传导突触传递。为了进一步了解这些生理
变化,我们将分析 n-Tr20-/- 和野生型小鼠的兴奋性和抑制性神经元中的翻译组
确定 n-Tr20 删除是否会破坏本地翻译。在目标 2 中,我们将检验我们的假设,即表型
源自 tRNA 丢失的原因是具有相同反密码子的 tRNA 库水平下降,我们
将研究耗尽的 tRNA 家族的身份是否影响这些表型。我们将进行 ChIP-
利用一种新型小鼠模型,对大脑中的几种主要细胞类型进行测序,该模型可以有条件地表达
RNA 聚合酶 III 的表位标记等位基因。根据这些数据,我们将识别并删除其他高度
表达 tRNA 并研究它们的丢失对小鼠大脑中主要细胞类型的影响。最后,我们将
通过研究 tRNA 丢失对翻译组和生理学的影响,将我们的工作扩展到人类
iPSC 衍生的神经元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN L ACKERMAN其他文献
SUSAN L ACKERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN L ACKERMAN', 18)}}的其他基金
Transfer RNAs in Hematopoietic Stem Cell Function
造血干细胞功能中的转移 RNA
- 批准号:
10735318 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
- 批准号:
10550207 - 财政年份:2022
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9213291 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9126621 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9271261 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9006366 - 财政年份:2015
- 资助金额:
$ 43.06万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
TNFRSF13B polymorphisms and immunity to transplantation
TNFRSF13B 多态性与移植免疫
- 批准号:
10734879 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Systems Genetics of Cocaine Preference in Drosophila
果蝇可卡因偏好的系统遗传学
- 批准号:
10675195 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
MicroRNA lipid-nanoparticle based therapy targets neuroinflammation and ApoE dysregulation in Alzheimer’s disease
基于 MicroRNA 脂质纳米颗粒的疗法针对阿尔茨海默病中的神经炎症和 ApoE 失调
- 批准号:
10667157 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Exploring the Impact of Genetic Ancestry on Acute Lymphoblastic Leukemia Risk in Latino Populations
探索遗传血统对拉丁裔人群急性淋巴细胞白血病风险的影响
- 批准号:
10607300 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别: