Artificial neural networks for high performance, fully automated particle tracking analysis even at low signal-to-noise regimes
人工神经网络即使在低信噪比条件下也能实现高性能、全自动粒子跟踪分析
基本信息
- 批准号:9347679
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdvanced DevelopmentAlgorithmsArtificial IntelligenceAutomobile DrivingBacteriaBindingBiologicalBiological Neural NetworksBiological SciencesClassificationCloud ComputingComplexComputer softwareComputersDataData AnalysesDevelopmentDiffuseEnsureEnvironmentEyeFutureGaussian modelGenerationsGoalsHeterogeneityHumanImageImage AnalysisInterventionKnowledgeLaboratoriesLeadLifeLinkLiquid substanceLocationMachine LearningManualsMeasurementMethodsMicroscopyModelingMorphologic artifactsMotionNoisePerformancePhasePhotobleachingProcessPropertyRadialResearchResearch PersonnelRetinaSavingsScientistSignal TransductionSmall Business Technology Transfer ResearchSoftware ToolsSpottingsStudentsTechniquesTechnologyTestingTimeTrainingVariantVirusVisionVisual CortexWorkbasebiophysical toolscell motilitycloud basedcostdesignexperimental studyfeedingfield studygraduate studentimprovedinsightinterestmacromoleculemovienanoparticlenovel strategiesparticlepathogenphysical scienceresponsespatiotemporalsubmicronterabytetoolvirtual
项目摘要
Abstract: Particle tracking (PT) is a powerful biophysical tool for elucidating molecular interactions, transport
phenomena and rheological properties in complex biological environments. Unfortunately, PT remains a niche
tool in life and physical sciences with a limited user base, in large part due to significant time and technical
constraints in extracting accurate time-variant positional data from recorded movies. These constraints are
exacerbated in experiments with low signal-to-noise ratios or substantial heterogeneity, as frequently
encountered with nanoparticles and pathogens in biological fluids. Currently available software that attempts
to automate the movie analysis process rely almost exclusively on assigning static image filters based on
specific intensity, pixel size and signal-to-noise ratio thresholds. Unfortunately, when applied to actual
experimental data with substantial spatial and temporal heterogeneity, the current software generally produces
substantial numbers of false positives (i.e. tracking artifacts) or false negatives (i.e. missing actual traces), and
frequently both. Frequent user intervention is thus required to ensure accurate tracking even when using
sophisticated tracking software, markedly reducing experimental throughput and resulting in substantial user-
to-user variations in analyzed data. The time required for accurate particle tracking analysis makes PT
experiments exceedingly expensive compared to other commonly used experimental techniques in life
sciences. These same tracking analysis limitations have effectively precluded investigators from undertaking
more sophisticated 3D PT, even though the microscopy capability to obtain such movies is readily available
and critical scientific insights can be gained from 3D PT. To circumvent the challenges with currently available
particle tracking software, we have developed a new approach for particle identification and tracking, based on
machine learning and convolutional neural networks (CNN). CNN is a type of feed-forward artificial neural
network designed to process information in a layered network of connections that mimics the organization of
real neural networks in the mammalian retina and visual cortex. Unlike most CNN imaging models that are
trained to make predictions on static images, we have trained our CNN to input adjacent frames so that each
prediction includes information from the past and future, thus effectively performing convolutions in both space
and time to infer particle locations. Similar principles of image analysis are now being harnessed by
developers of autonomous vehicle technologies to distinguish the motions of different objects on the road. We
have applied our CNN tracking algorithm to a wide range of 2D movies capturing dynamic motions of
nanoparticles, viruses and highly motile bacteria, achieving at least 30-fold time savings with virtually no need
for human intervention while maintaining robust tracking performance (i.e. low false positive and low false
negative rates). In this STTR proposal, we seek to focus on further optimization and testing of our neural
network tracking platform for 2D PT, including the use of cloud computing (Aim 1), and extending our neural
network tracker to enable accurate 3D PT (Aim 2). Our vision is to popularize PT as a research tool among
researchers by minimizing the time and labor costs associated with PT analysis.
摘要:粒子追踪(PT)是一种强大的生物物理工具,用于阐明分子相互作用、运输
复杂生物环境中的现象和流变特性。不幸的是,PT 仍然是一个小众市场
生命和物理科学领域的工具,用户群有限,很大程度上是由于大量的时间和技术
从录制的电影中提取准确的时变位置数据的限制。这些限制是
在低信噪比或显着异质性的实验中加剧,经常
遇到生物体液中的纳米颗粒和病原体。目前可用的软件尝试
为了使电影分析过程自动化,几乎完全依赖于分配静态图像过滤器
特定强度、像素大小和信噪比阈值。不幸的是,当应用到实际中时
实验数据具有很大的空间和时间异质性,当前的软件通常会产生
大量误报(即跟踪伪影)或漏报(即丢失实际痕迹),以及
经常两者兼而有之。因此,即使在使用时也需要频繁的用户干预来确保准确的跟踪
复杂的跟踪软件,显着降低了实验吞吐量并导致大量的用户
分析数据的用户差异。精确的粒子跟踪分析所需的时间使得 PT
与生活中其他常用的实验技术相比,实验极其昂贵
科学。这些相同的跟踪分析限制有效地阻止了调查人员进行
更复杂的 3D PT,尽管获得此类电影的显微镜能力很容易获得
可以从 3D PT 中获得重要的科学见解。为了规避现有的挑战
粒子跟踪软件,我们开发了一种新的粒子识别和跟踪方法,基于
机器学习和卷积神经网络(CNN)。 CNN 是一种前馈人工神经网络
网络设计用于在模拟组织的分层连接网络中处理信息
哺乳动物视网膜和视觉皮层中的真实神经网络。与大多数 CNN 成像模型不同的是
经过训练对静态图像进行预测,我们训练了 CNN 来输入相邻帧,以便每个
预测包括来自过去和未来的信息,从而在两个空间中有效地执行卷积
以及推断粒子位置的时间。现在正在利用类似的图像分析原理
自动驾驶汽车技术的开发人员可以区分道路上不同物体的运动。我们
已将我们的 CNN 跟踪算法应用于各种 2D 电影,捕捉物体的动态运动
纳米颗粒、病毒和高活力细菌,几乎无需任何操作即可节省至少 30 倍的时间
用于人为干预,同时保持强大的跟踪性能(即低误报和低误报)
负利率)。在这个 STTR 提案中,我们寻求专注于我们的神经网络的进一步优化和测试
用于 2D PT 的网络跟踪平台,包括云计算的使用(目标 1),以及扩展我们的神经网络
网络跟踪器以实现精确的 3D PT(目标 2)。我们的愿景是在人群中普及 PT 作为一种研究工具
研究人员通过最大限度地减少与 PT 分析相关的时间和劳动力成本。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D.
卷积神经网络可自动检测 2D 和 3D 亚微米级粒子的跟踪。
- DOI:
- 发表时间:2018-09-04
- 期刊:
- 影响因子:11.1
- 作者:Newby, Jay M;Schaefer, Alison M;Lee, Phoebe T;Forest, M Gregory;Lai, Samuel K
- 通讯作者:Lai, Samuel K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Lai其他文献
Samuel Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Lai', 18)}}的其他基金
Engineering Siglec15/TGF-beta targeted bispecific antibodies that modulate the tumor microenvironment and enhances T-cell immunotherapy against pancreatic cancer
工程化 Siglec15/TGF-β 靶向双特异性抗体可调节肿瘤微环境并增强针对胰腺癌的 T 细胞免疫治疗
- 批准号:
10651442 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Engineered “muco-trapping” antibodies for inhaled therapy of parainfluenza and human metapneumovirus infections
用于副流感和人类偏肺病毒感染吸入治疗的工程化“粘膜捕获”抗体
- 批准号:
10587723 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Engineered “muco-trapping” antibodies for inhaled therapy of parainfluenza and human metapneumovirus infections
用于副流感和人类偏肺病毒感染吸入治疗的工程化“粘膜捕获”抗体
- 批准号:
10707403 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Engineering bispecific antibodies for non-hormonal contraception
用于非激素避孕的双特异性抗体工程
- 批准号:
10428467 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Engineering bispecific antibodies for non-hormonal contraception
用于非激素避孕的双特异性抗体工程
- 批准号:
10618849 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Overcoming anti-PEG immunity to restore prolonged circulation and efficacy of PEGylated therapeutics
克服抗 PEG 免疫,恢复 PEG 化治疗的延长循环和功效
- 批准号:
10181024 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Prevalence and characteristics of anti-PEG antibodies in humans
人类抗 PEG 抗体的流行率和特征
- 批准号:
8622684 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Optimizing Plantibodies for Trapping HIV and HSV in Cervicovaginal Mucus
优化 Plantibodies 以捕获宫颈阴道粘液中的 HIV 和 HSV
- 批准号:
8803845 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Optimizing Plantibodies for Trapping HIV and HSV in Cervicovaginal Mucus
优化 Plantibodies 以捕获宫颈阴道粘液中的 HIV 和 HSV
- 批准号:
8515320 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Optimizing Plantibodies for Trapping HIV and HSV in Cervicovaginal Mucus
优化 Plantibodies 以捕获宫颈阴道粘液中的 HIV 和 HSV
- 批准号:
8329741 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Developing and Automating an Extracellular Vesicle-Based Test for Early Detection of Hepatocellular Carcinoma
开发和自动化基于细胞外囊泡的测试以早期检测肝细胞癌
- 批准号:
10823687 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
- 批准号:
10358186 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别: