Developing and Automating an Extracellular Vesicle-Based Test for Early Detection of Hepatocellular Carcinoma
开发和自动化基于细胞外囊泡的测试以早期检测肝细胞癌
基本信息
- 批准号:10823687
- 负责人:
- 金额:$ 66.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ANXA5 geneAblationAdoptedAdvanced DevelopmentAffectAlcoholic Liver DiseasesAlgorithmsAntibodiesAutomationBar CodesBioinformaticsBiological MarkersBiometryBlood CirculationCD81 geneCancer EtiologyCase/Control StudiesCellsCessation of lifeChemistryChronic Hepatitis BCirculationCirrhosisClinicalClinical Practice GuidelineDNADetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDiseaseEarly DiagnosisEtiologyExcisionExhibitsGPC3 geneGoalsGuidelinesHepatitis BHepatitis CHepatologyHourIndividualJointsLiverLiver CirrhosisLiver diseasesMediatingMedical centerMembrane ProteinsMethodsModalityMotivationOncologyOperative Surgical ProceduresPaperPathologyPatientsPerformancePhasePhospholipidsPlasmaPrimary Malignant Neoplasm of LiverPrimary carcinoma of the liver cellsProcessPrognosisProtein AnalysisQuantitative EvaluationsRecommendationResearchRiskRoboticsSamplingSerumSiteSmall Business Innovation Research GrantSpecificitySpecimenSurfaceSystemSystems DevelopmentTACSTD1 geneTestingTimeTrainingTumor-DerivedUltrasonographyValidationViral hepatitisalpha-Fetoproteinsarmassay developmentbiomarker developmentcell typecirculating biomarkerscohortdetection sensitivitydiagnostic valueearly detection biomarkersextracellular vesicleshepatocellular carcinoma cell linein-vitro diagnosticsinnovationlipid nanoparticleliquid biopsyliver transplantationmolecular pathologynanoparticleneoplastic cellnon-alcoholic fatty liver diseasenovel markerpredictive modelingproduct developmentrobotic systemtechnology platformtumortumor microenvironmentultrasound
项目摘要
PROJECT SUMMARY
Hepatocellular carcinoma (HCC) comprises 80-85% of primary liver cancers and frequently develops in patients
with liver cirrhosis or chronic hepatitis B virus infection. HCC's poor prognosis is primarily due to advanced-stage
diagnosis. Current clinical practice guidelines recommend biannual liver ultrasounds, with or without serum
alpha-fetoprotein (AFP) testing, for at-risk patients to detect HCC at a curable stage. However, their accuracy is
limited, with sensitivity between 60-70% and specificity of 90%. Consequently, novel biomarkers for early
detection of HCC are urgently needed. Extracellular vesicles (EVs) are a heterogeneous group of lipid
nanoparticles that are released by all types of cells, and even more so by tumor cells. Tumor-derived EVs are
present in circulation at relatively early stages of disease and are readily accessible across all disease stages.
Since the surface proteins of tumor EVs mirror those of the parental tumor cells and those cells within tumor
microenvironment, exploiting the diagnostic potential of HCC EVs’ surface protein signatures as a novel
biomarker for early detection of HCC holds great promise to significantly augment the ability of current diagnostic
modalities.
Over the last five years, our joint team comprised of Eximius Dx, UCLA, and Cedars Sinai Medical Center
(CSMC) has demonstrated of HCC EV Surface Protein (SP) Test, capable of dissecting and quantifying
subpopulations of HCC EVs in plasma samples. In our 2022 Hepatology paper, we summarized a phase-2
biomarker study which successfully validated the feasibility of HCC EV SP Test for early HCC detection. The
long-term goal of this Direct-to-Phase-II proposal is to advance the development, optimization, and automation
of the HCC EV SP Test, with the ultimate goal of establishing a more sensitive in vitro diagnostic (IVD) test based
on HCC EVs. The innovation of the proposed HCC EV SP Test lies in the integration of two platform technologies:
(i) EV Click MagBeads for click chemistry-mediated capture of subpopulations of HCC EVs, and (ii) real-time
immuno-PCR for quantifying the captured HCC EVs. In parallel, an algorithm will be established to process the
resulting HCC EV signatures into HCC EV SP score for distinguishing early-stage HCC from at-risk cirrhosis.
This new IVD test will use less then 1-mL plasma and have a sample-to-answer workflow of no more than 3
hours. By adopting an in-house developed robotic system, the automated workflow allows for a throughput >
480 samples per round. Once optimized and automated the HCC EV SP Test will be validated by clinically
annotated plasma samples to assess its diagnostic performance for distinguishing early-stage HCC from at-risk
liver cirrhotic patients, covering etiologies including alcohol-associated liver disease (ALD), non-alcoholic fatty
liver disease (NAFLD), and viral hepatitis (B/C). The successful development of the proposed HCC EV SP Test
is rapidly translatable, enabling a sensitive HCC EV-based IVD test for detecting early-stage HCC.
项目概要
肝细胞癌 (HCC) 占原发性肝癌的 80-85%,并且经常发生在患者中
患有肝硬化或慢性乙型肝炎病毒感染的HCC预后不良主要是由于晚期。
目前的临床实践指南建议每年两次进行肝脏超声检查,有或没有血清。
甲胎蛋白 (AFP) 检测,用于高危患者检测可治愈阶段的 HCC。
有限,经测试,早期新型生物标志物的敏感性为 60-70%,特异性为 90%。
迫切需要检测 HCC 细胞外囊泡 (EV) 是一组异质脂质。
所有类型的细胞,尤其是肿瘤细胞释放的纳米颗粒。
存在于疾病相对早期阶段的循环中,并且在所有疾病阶段都很容易获得。
由于肿瘤 EV 的表面蛋白反映了亲本肿瘤细胞和肿瘤内细胞的表面蛋白
微环境,利用 HCC EV 表面蛋白特征的诊断潜力作为一种新型方法
用于早期检测 HCC 的生物标志物有望显着增强当前诊断的能力
方式。
在过去的五年里,我们的联合团队由 Eximius Dx、加州大学洛杉矶分校和 Cedars Sinai 医疗中心组成
华润上华 (CSMC) 展示 HCC EV 表面蛋白 (SP) 检测,能够解剖和定量
在我们的 2022 年肝病学论文中,我们总结了血浆样本中的 HCC EV 亚群。
生物标志物研究成功验证了 HCC EV SP 测试用于早期 HCC 检测的可行性。
该直接进入第二阶段提案的长期目标是推进开发、优化和自动化
HCC EV SP 测试的最终目标是建立一种更灵敏的体外诊断 (IVD) 测试
拟议的 HCC EV SP 测试的创新在于两种平台技术的集成:
(i) EV Click MagBeads 用于点击化学介导的 HCC EV 亚群捕获,以及 (ii) 实时捕获
同时,将建立一种算法来处理捕获的 HCC EV。
由此产生的 HCC EV 特征转化为 HCC EV SP 评分,以区分早期 HCC 和高危肝硬化。
这项新的 IVD 测试将使用少于 1 mL 的血浆,并且样本到答案的工作流程不超过 3
通过采用内部开发的机器人系统,自动化工作流程可实现 > 小时的吞吐量。
每轮 480 个样本一旦优化并自动化,HCC EV SP 测试将得到临床验证。
带注释的血浆样本,以评估其区分早期 HCC 和高危 HCC 的诊断性能
肝硬化患者,涵盖病因包括酒精相关性肝病 (ALD)、非酒精性脂肪肝
肝病(NAFLD)和病毒性肝炎(B/C) 拟议的 HCC EV SP 测试的成功开发。
可快速翻译,从而能够进行基于 HCC EV 的灵敏 IVD 测试来检测早期 HCC。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Xiao Liu其他文献
Sean Xiao Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Xiao Liu', 18)}}的其他基金
CTC Purification System Based on Thermoresponsive NanoSubstrates
基于热响应纳米基质的CTC纯化系统
- 批准号:
9133318 - 财政年份:2013
- 资助金额:
$ 66.16万 - 项目类别:
相似国自然基金
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
消融星状神经节通过神经-免疫调节对射血分数保留心衰的治疗作用及机制研究
- 批准号:82370518
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
不全射频消融通过METTL1-tRNA修饰-糖代谢重编程信号轴诱导肾癌复发的机制研究
- 批准号:82372056
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SUMO2通过类泛素化修饰IRF3导致肝癌射频消融残癌免疫抑制的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智能响应型纳米药物通过长效维持CTL活化提高肝癌消融术后免疫治疗应答的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 66.16万 - 项目类别:
CLEC7A in microglia biology and Alzheimer's disease
CLEC7A 在小胶质细胞生物学和阿尔茨海默病中的作用
- 批准号:
10659940 - 财政年份:2023
- 资助金额:
$ 66.16万 - 项目类别:
Modulation of Macrophage Antifungal Activity by the Transcriptional Co-regulator CITED1
转录辅助调节因子 CITED1 对巨噬细胞抗真菌活性的调节
- 批准号:
10727860 - 财政年份:2023
- 资助金额:
$ 66.16万 - 项目类别:
HIV-1 Env gp160 maturation in the Golgi apparatus
HIV-1 Env gp160 在高尔基体中成熟
- 批准号:
10626272 - 财政年份:2023
- 资助金额:
$ 66.16万 - 项目类别:
Defining The Role of Failed-Repair Proximal Tubule Cells in AdvancedRenal Disease in African Americans
确定修复失败的近端小管细胞在非裔美国人晚期肾病中的作用
- 批准号:
10740665 - 财政年份:2023
- 资助金额:
$ 66.16万 - 项目类别: