Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
基本信息
- 批准号:9135555
- 负责人:
- 金额:$ 48.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-19 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBinding ProteinsBiochemicalBiochemistryBiological AssayCellsCellular StressChaperone Protein InteractionCollectionComplexDNA DamageDNA Sequence AlterationDefectDevelopmentDiabetes MellitusDiseaseDissociationEndoplasmic ReticulumEnsureEnvironmentEquilibriumEukaryotaFailureFeedbackGene TargetingGeneticGoalsHealthHeat shock factorHeat-Shock ResponseHomeostasisHumanIn VitroInvestigationKnowledgeLeadLibrariesMalignant - descriptorMalignant NeoplasmsMeasurementMissionModelingModificationMolecular ChaperonesMolecular ProfilingNeurodegenerative DisordersOsmolar ConcentrationOutcomeOxidative StressPathway interactionsPatternPharmaceutical PreparationsPhosphorylationPhosphorylation SitePropertyProteinsPublic HealthRegulationReporterResearchRoleSaccharomycetalesStressSystemSystems BiologyTemperatureTherapeuticTherapeutic InterventionTimeUnited States National Institutes of HealthWorkbiological adaptation to stressfitnessin vivoinsightmathematical modelmeetingsneglectpathogenprotein foldingresearch studyresponsetranscription factor
项目摘要
DESCRIPTION (provided by applicant): Faced with myriad external insults, like temperature changes and osmolarity imbalances, cells must adjust their biochemical activities to meet ever-shifting demands. To counteract environmental challenges, or stresses, cells have evolved a collection of stress response pathways that work as corrective feedback loops to restore homeostasis when the cell is thrown out of equilibrium. Stress responses are ancient and the core pathways are conserved in all eukaryotes. Defects in these pathways - failures to restore homeostasis - can have deleterious effects, as in disease states like diabetes. Moreover, pathogens and cancers can selectively modulate and exploit stress response pathways to harness their cytoprotective functions. While decades of genetics, biochemistry and expression profiling have identified the pathways, worked out the basic activation mechanisms and revealed the target genes our current understanding of stress response pathways lacks both depth and breadth. It lacks depth in that we do not know the mechanisms that control the pathways in real-time to ensure sufficient activation upon stress and efficient deactivation once homeostasis is restored. Our understanding lacks breadth in that the pathways have generally been studied independently, neglecting potential interconnections. A quantitative and mechanistic understanding of how these pathways are regulated to restore homeostasis and knowledge of how the different stress responses operate as an interconnected network are prerequisites to effectively modulating these pathways for therapeutic purposes. In this context, I propose three specific aims to increase the depth of our understanding of the quantitative regulatory mechanisms that control stress response pathways and the breadth of our understanding of the interconnections between these responses. In the first two aims I will focus on the heat shock response, the elemental and and prototypical stress response, to reveal how phosphorylation and chaperone protein binding dynamics quantitatively regulate the activity of the transcription factor, Hsf1. In the third aim, I will focus on the interconnections between stres response pathways by building a panel of stress reporter strains that will allow simultaneous measurement of all stress responses following any genetic or environmental perturbation. The proposed research is significant because it will provide depth and breadth to our understanding of stress responses. Such understanding is a prerequisite to effectively harnessing these vital pathways for therapeutic benefit. Finally, I expect that the mechanistic systems biology approach described here will serve as a model for the quantitative investigation of pathways and networks in increasingly complex systems.
描述(由申请人提供):面对无数的外部侵害,例如温度变化和渗透压失衡,细胞必须调整其生化活动以满足不断变化的需求。为了应对环境挑战或压力,细胞进化出了一系列压力反应途径,这些途径作为纠正反馈回路,在细胞失去平衡时恢复体内平衡。应激反应是古老的,并且核心途径在所有真核生物中都是保守的。这些途径的缺陷——无法恢复体内平衡——可能会产生有害影响,就像在糖尿病等疾病状态下一样。此外,病原体和癌症可以选择性地调节和利用应激反应途径来利用其细胞保护功能。尽管数十年的遗传学、生物化学和表达谱已经确定了这些途径,找出了基本的激活机制并揭示了靶基因,但我们目前对应激反应途径的理解缺乏深度和广度。它缺乏深度,因为我们不知道实时控制通路的机制,以确保在压力下充分激活并在恢复稳态后有效失活。我们的理解缺乏广度,因为这些路径通常是独立研究的,忽略了潜在的相互联系。对如何调节这些途径以恢复稳态的定量和机制理解以及对不同应激反应如何作为互连网络运作的了解是有效调节这些途径以达到治疗目的的先决条件。在这种背景下,我提出了三个具体目标,以加深我们对控制应激反应途径的定量调节机制的理解,以及我们对这些反应之间相互联系的理解的广度。在前两个目标中,我将重点关注热休克反应、基本应激反应和原型应激反应,以揭示磷酸化和伴侣蛋白结合动力学如何定量调节转录因子 Hsf1 的活性。在第三个目标中,我将通过构建一组压力报告菌株来关注压力反应途径之间的相互联系,这将允许同时测量任何遗传或环境扰动后的所有压力反应。拟议的研究意义重大,因为它将为我们对压力反应的理解提供深度和广度。这种理解是有效利用这些重要途径获得治疗效果的先决条件。最后,我希望这里描述的机械系统生物学方法将成为对日益复杂的系统中的路径和网络进行定量研究的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Pincus其他文献
David Pincus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Pincus', 18)}}的其他基金
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10210948 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10210948 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10392450 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory Dynamics of the Proteostasis Network
蛋白质稳态网络的调控动态
- 批准号:
10594438 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
8609686 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
8918355 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
9349371 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Quantitative approaches to reveal the homeostatic control mechanisms of stress re
揭示应激反应稳态控制机制的定量方法
- 批准号:
8737997 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
大肠杆菌麦芽糖结合蛋白与卡介苗协同促进Th1细胞活化机制及其抑制肿瘤生长作用研究
- 批准号:31170875
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
警报素(alarmin)HMGN1作为DNA疫苗佐剂的应用基础研究
- 批准号:30901376
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Developing Autophagy-Targeting Chimeras and Optimizing Cell Penetration of Large-Molecule Therapeutics
开发自噬靶向嵌合体并优化大分子治疗的细胞渗透
- 批准号:
10558145 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Translation, targeting, and decay of yeast nonsense-containing mRNAs
含有无义酵母的 mRNA 的翻译、靶向和衰变
- 批准号:
10550367 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
- 批准号:
10646613 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别: