MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe - Addressing missing data in the MATCHES study to improve ML/AI readiness
MATCHES:使远程医疗在家中有效且安全地提供癌症护理 - 解决 MATCHES 研究中缺失的数据,以提高 ML/AI 的准备情况
基本信息
- 批准号:10842906
- 负责人:
- 金额:$ 35.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptionAlgorithmsArtificial IntelligenceCaringCenters of Research ExcellenceClinicCollaborationsComplexDataData ScienceData SetDatabasesDevicesDimensionsDocumentationElectronic Health RecordEnsureEthicsFosteringFoundationsFrightGoalsGrantHealthcareHomeLearningLiteratureLow incomeMachine LearningMethodsModelingObservational StudyOncologyOutcomePalliative CareParentsPatient Outcomes AssessmentsPatient Self-ReportPatientsPatternProcessReadinessReportingReproducibilityResearchResearch PersonnelStatistical ModelsStructureTimeWorkanalysis pipelineautoencodercancer carecancer health disparitycare deliverycomputer programcostdata reusedata sharingdesignevidence baseexperiencefeature extractiongenerative adversarial networkhealth datahealth practicehigh dimensionalityimprovedindividual patientinsightmachine learning algorithmmachine learning methodmultimodalityparent grantpatient portalpatient subsetsprecision oncologyprogramsprospectiveremediationsimulationskillsstatistical and machine learningsurvivorshiptelehealthtooltrial designunsupervised learning
项目摘要
Project Summary:
The MATCHES (Making Telehealth Delivery of Cancer Care at Home Effective and Safe) Telehealth Research
Center aims to build the evidence base necessary to establish best practices for telehealth-enabled cancer care.
Prior work demonstrates that oncology-focused telehealth can achieve favorable outcomes, but large-scale trials
have been limited to specific contexts like palliative care or survivorship. Adoption has been constrained by
restricted reimbursement. The MATCHES Center will help remediate this evidence gap by executing prospective
trials and conducting observational analyses. Data will be integrated from multi-layers from telehealth platforms,
patient portals, mobile tracking devices, and the electronic health record (EHR). This will help develop a new
paradigm in oncology—precision care delivery—with the ultimate goal of matching individual patients with the
most beneficial combination of clinic-based or telehealth-supported home-setting care at the appropriate time—
all based on the totality of dynamically available data. This will be accomplished by applying data science
methods—including nimble trial designs and machine learning—that have had limited application to telehealth.
Missing data have been observed in the MATCHES curated data sets, which is also a common issue of
both EHR and patient-reported health data. Due to the presence of missing data, the MATCHES data is not
ready for machine learning or artificial intelligence applications as inappropriate handling of missing data can
lead to both bias and loss of statistical power. Bias is particularly concerning if a subgroup of patients is more
likely to have missing data. For example, if low-income patients are more likely to skip self-reported outcomes
for fear of triggering costly work-up, their experience will be underrepresented in the data and analysis,
compromising the robustness and generalizability of conclusions. These issues are well-recognized in the
statistical literature and a wide array of tools have been developed to impute missing data with plausible values
obtained from a probabilistic model and perform analyses recognizing that some data points are imputed.
However, many imputation methods do not scale up to the dimensions in the MATCHES data, and they may not
be robust to differentmissing data mechanisms. Additionally, there is no guidance on how to examine the missing
data patterns systematically, especially in the high-dimensional feature space as in MATCHES. Hence in this
supplement, we propose and develop machine-learning-based approaches that will be able to handle a high-
dimensional feature matrix, complex patterns of missingness, and more general missing mechanisms. We will
then apply these methods to examine the complex missing data patterns and provide imputed data sets that are
ready for ML/AL applications both for the researchers of the MATCHES program and to be shared with others
across the Telehealth Research Centers of Excellence (TRACE). We will also provide analysis pipelines that will
help appropriately handle missing data in other large-scale multi-modality healthcare data sets.
项目摘要:
远程医疗研究(使家庭有效且安全的癌症护理远程医疗服务)远程医疗研究
中心旨在建立必要的证据基础,以建立远程医疗癌症护理的最佳实践。
先前的工作表明,以肿瘤学为中心的远程医疗可以取得有利的结果,但是大规模的试验
仅限于姑息治疗或生存等特定环境。收养已受到限制
限制报销。比赛中心将通过执行潜在的有助于弥补这一证据差距
试验和进行观察分析。数据将从远程医疗平台的多层集成,
患者门户,移动跟踪设备和电子健康记录(EHR)。这将有助于开发新的
肿瘤学范式 - 精确护理的交付 - 是将个别患者与
在适当的时候,基于诊所或远程医疗的家庭设定护理的最有益组合 -
所有这些都是基于动态可用数据的总数。这将通过应用数据科学来实现
方法(包括敏捷的试验设计和机器学习)对远程医疗的应用有限。
在策划的数据集中观察到丢失的数据,这也是
EHR和患者报告的健康数据。由于缺少数据,匹配数据不是
准备用于机器学习或人工智能应用程序,因为缺少数据的不适当处理可以
导致偏见和统计能力的丧失。偏见特别关注的是,如果患者的子组更多
可能遗漏了数据。例如,如果低收入患者更有可能跳过自我报告的结果
由于担心触发昂贵的工作,他们的经验在数据和分析中的代表性不足,
损害结论的鲁棒性和概括性。这些问题在
已经开发了统计文献和各种各样的工具来导入具有合理值的丢失数据
从概率模型中获得并执行分析,以认识到某些数据点是估算的。
但是,许多插补方法不能扩展到匹配数据中的维度,并且可能不会
对不同的数据机制保持鲁棒。此外,没有关于如何检查缺失的指导
数据模式系统地,尤其是在匹配中的高维特征空间中。因此
补充,我们建议并开发基于机器的学习方法,以便能够处理高级
尺寸特征矩阵,复杂的缺失模式和更普遍的缺失机制。我们将
然后应用这些方法来检查复杂的丢失数据模式,并提供了估算的数据集
为ML/AL应用程序准备了比赛计划的研究人员,并且要与他人共享
跨越远程医疗研究中心(Trace)。我们还将提供分析管道
在其他大规模多模式医疗保健数据集中,有助于适当处理丢失的数据。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Honing in on the Hospital-at-Home Model.
- DOI:10.1016/j.mcpdig.2023.06.015
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Mullangi, Samyukta;Daly, Bobby
- 通讯作者:Daly, Bobby
Telemedicine as patient-centred oncology care: will we embrace or resist disruption?
远程医疗作为以患者为中心的肿瘤护理:我们会拥抱还是抵制颠覆?
- DOI:10.1038/s41571-023-00796-5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:West,HowardJack;Bange,Erin;Chino,Fumiko
- 通讯作者:Chino,Fumiko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL J MORRIS其他文献
EFFECTS OF PARTICULATE MATTER INHALATION ON CHEST IMAGING DURING DEPLOYMENT TO OPERATION INHERENT RESOLVE (OIR)
- DOI:
10.1016/j.chest.2022.08.1649 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
TYSON J SJULIN;MICHAEL J MORRIS;SALLY DELVECCHIO;GIOVANNI LORENZ;BENJAMIN P ILIFF - 通讯作者:
BENJAMIN P ILIFF
CHARACTERIZING THE ASTHMA PHENOTYPE OF SERVICE-CONNECTED MEDICALLY SEPARATED MILITARY PERSONNEL
- DOI:
10.1016/j.chest.2023.07.3171 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
JOSHUA BOSTER;STEVEN STOFFEL;WILLIAM MOORE;MICHAEL J MORRIS - 通讯作者:
MICHAEL J MORRIS
REPEAT PULMONARY FUNCTION TESTING IN ACTIVE DUTY MILITARY FOR PULMONARY DISEASES RELATED TO ENVIRONMENTAL DEPLOYMENT EXPOSURES (STAMPEDE III)
- DOI:
10.1016/j.chest.2022.08.1651 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
STEVEN STOFFEL;JESS T. ANDERSON;MATEO HOULE;ROBERT J WALTER;MICHAEL J MORRIS - 通讯作者:
MICHAEL J MORRIS
ETIOLOGIES AND CHARACTERISTICS OF INTERSTITIAL LUNG DISEASE IN AN ACTIVE-DUTY MILITARY POPULATION
- DOI:
10.1016/j.chest.2023.07.2064 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
WILLIAM MOORE;JOSHUA BOSTER;MICHAEL J MORRIS;IAN CHR MCINNIS;BRIAN S BARBER;MICHAEL A GONZALES - 通讯作者:
MICHAEL A GONZALES
MULTIPLE SOUTHWEST ASIA DEPLOYMENTS ARE NOT ASSOCIATED WITH CHANGES IN PULMONARY FUNCTION TESTING OR EXERCISE TOLERANCE
- DOI:
10.1016/j.chest.2023.07.3308 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
STEVEN STOFFEL;MICHAEL J MORRIS;JESS T. ANDERSON;BRIAN S BARBER;LUKE JANOWIAK;ROBERT J WALTER - 通讯作者:
ROBERT J WALTER
MICHAEL J MORRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL J MORRIS', 18)}}的其他基金
MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe
匹配:使远程医疗在家中提供有效且安全的癌症护理
- 批准号:
10673980 - 财政年份:2022
- 资助金额:
$ 35.39万 - 项目类别:
MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe
匹配:使远程医疗在家中提供有效且安全的癌症护理
- 批准号:
10454670 - 财政年份:2022
- 资助金额:
$ 35.39万 - 项目类别:
Clinical Qualification of Imaging and Fluid-Based Tumor Monitoring Biomarkers for Metastatic Castration Resistant Prostate Cancer
转移性去势抵抗性前列腺癌的影像学和基于液体的肿瘤监测生物标志物的临床资格
- 批准号:
9974088 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Clinical Qualification of Imaging and Fluid-Based Tumor Monitoring Biomarkers for Metastatic Castration Resistant Prostate Cancer
转移性去势抵抗性前列腺癌的影像学和基于液体的肿瘤监测生物标志物的临床资格
- 批准号:
10447573 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Clinical Qualification of Imaging and Fluid-Based Tumor Monitoring Biomarkers for Metastatic Castration Resistant Prostate Cancer
转移性去势抵抗性前列腺癌的影像学和基于液体的肿瘤监测生物标志物的临床资格
- 批准号:
10868060 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Evaluation and optimization of NWB neurophysiology software and data in the cloud
NWB 神经生理学软件和云数据的评估和优化
- 批准号:
10827688 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Developing a pragmatic guide to implementing social risk referrals: A partnership between Caring Health Center (CHC) and the Implementation Science Center for Cancer
制定实施社会风险转诊的实用指南:关爱健康中心 (CHC) 与癌症实施科学中心之间的合作伙伴关系
- 批准号:
10822141 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别: