Human Ear Cellular Atlas
人耳细胞图谱
基本信息
- 批准号:10705836
- 负责人:
- 金额:$ 59.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-16 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcoustic NeuromaAddressAdultAnimal ModelAnimalsArchitectureArchivesArtificial IntelligenceAtlasesAuditoryAutopsyAwarenessBiological Response Modifier TherapyCadaverCatalogingCellsCellular MorphologyCochleaCollaborationsCommunitiesCrista ampullarisCryoultramicrotomyDataData AnalysesDatabasesDiseaseDissociationDoctor of PhilosophyEarEducational MaterialsEducational workshopEpitheliumEquilibriumEventExcisionFacultyFetal TissuesGene ExpressionGenesHearingHearing problemHistologicHistologyHourHumanImageImaging DeviceImaging TechniquesImmunohistochemistryIn Situ HybridizationInstructionInternationalInvestigationKnowledgeLabyrinthLinear RegressionsMapsMedicalMedical RecordsMedical StudentsMessenger RNAMethodsMolecularMolecular ProfilingMorphologyOperative Surgical ProceduresOptical Coherence TomographyOpticsOrganOrgan DonorOrgan ProcurementsOutcomeOval WindowParticipantPatientsPerilymphPersonsPhysiologicalPostdoctoral FellowProcessProteinsProtocols documentationPublicationsPublishingRecording of previous eventsRegistriesResearchResearch PersonnelResolutionResourcesSaccule structureScanning Electron MicroscopyScienceScientistSensorySpecimenState MedicineSystemTechniquesTemporal bone structureTestingTherapeuticTissue BanksTissue DonorsTissuesTrainingTraining TechnicsTranscriptTranslationsUtricle structureValidationVestibulecellular imagingdata sharingdeafnessdesigndoctoral studenteffective therapyequilibration disorderflexibilityhearing impairmenthigh resolution imaginghuman imagingimaging probeimaging systeminner ear diseasesinsightmeetingsmicroendoscopymolecular imagingnoveloptical imagingoutreachpharmacologicprogramsrecruitround windowsingle-cell RNA sequencingsocial mediasuccesstissue archivetooltranscriptomevalidation studiesvirtualvirtual experimentsvirtual surgery
项目摘要
Abstract:
Hearing and balance disorders disable nearly half a billion people worldwide, yet there are virtually no
pharmacological or biological therapies for these disorders. This alarming state of medicine coexist with the
brighter state of science where numerous therapeutic approaches have shown efficacy in animal models. This
conundrum reflects the fact that there are important differences between animal models and humans, that we
have an incomplete understanding of the molecular signatures of the auditory and vestibular organs in the human
inner ear, and that adult human inner ear tissues are not readily available to test promising therapeutics. We
propose to solve this conundrum by defining the molecular makeup of normal, live human inner ear
tissues (Aim 1), describing the three-dimensional (3D) cellular architecture of unprocessed human inner
ears (Aim 2), training new and established investigators (Aim 3), and enhancing awareness of human
inner ear research (Aim 4).
In support of this approach, we have designed a surgical method to procure live inner ear tissues from
deceased organ donors who typically have normal auditory and vestibular function. We have begun assembling
a registry consisting of medical records, single-cell transcriptomes, and histologic sections of vestibular tissues
(utricles). In parallel, we have augmented the registry with utricles from vestibular schwannoma patients
undergoing surgical resection. Here, we propose to increase the recruitment of organ donors and vestibular
schwannoma patients and expand our registry to include all inner ear sensory organs and generate a molecular
cell atlas of the adult human inner ear (Aim 1). Additional tissues and perilymph will be collected, analyzed and
shared with the broader scientific community for gene and protein validation. Furthermore, we will use a
miniature, flexible imaging probe we developed to perform micro-optical coherence tomography (µOCT)-based
endomicroscopy on rapid autopsy cadavers to generate an optical cell atlas of the 3D-intact, unprocessed human
inner ear (Aim 2). A second registry will be assembled, consisting of digitized µOCT-histology images analyzed
with the aid of both linear regression and artificial intelligence tools. Thirdly, we will train clinicians, clinician-
scientists, and researchers on the techniques of procuring and imaging human inner ear tissues through hands-
on training, simulated surgery, and didactic workshops (Aim 3). Lastly, we will raise awareness of studying
human inner ear tissues through outreach activities, publicizing our resources, data sharing, and collaborations
(Aim 4).
Upon completion of this 5-year program, we will have assembled and shared a molecular and optical cell
atlas of the human inner ear and increased awareness and utilization of this resource by the scientific community.
抽象的:
听力和平衡障碍导致全球近 5 亿人残疾,但实际上没有
这些疾病的药物或生物疗法与药物治疗并存。
更光明的科学状态,许多治疗方法已在动物模型中显示出疗效。
难题反映了动物模型和人类之间存在重要差异的事实,我们
对人类听觉和前庭器官的分子特征不完全了解
内耳,并且成人内耳组织不易用于测试有前途的治疗方法。
建议通过定义正常活人内耳的分子组成来解决这个难题
组织(目标 1),描述未加工的人体内部的三维 (3D) 细胞结构
耳朵(目标 2),培训新的和已建立的调查员(目标 3),以及提高人类的意识
内耳研究(目标 4)。
为了支持这种方法,我们设计了一种手术方法来获取活的内耳组织
通常听觉和前庭功能正常的已故器官捐献者我们已经开始集合。
由医疗记录、单细胞转录组和前庭组织的组织学切片组成的注册表
与此同时,我们还增加了来自前庭神经鞘瘤患者的椭圆囊的登记。
在这里,我们建议增加器官捐献者和前庭的招募。
神经鞘瘤患者并扩大我们的登记范围以包括所有内耳感觉器官并生成分子
将收集、分析和分析成人内耳的细胞图谱(目标 1)。
此外,我们将与更广泛的科学界共享基因和蛋白质验证。
我们开发的微型灵活成像探头用于执行基于微光学相干断层扫描 (µOCT) 的操作
对快速尸检尸体进行内窥镜检查,生成 3D 完整、未处理的人体光学细胞图谱
内耳(目标 2)将被组装,由分析的数字化 µOCT 组织学图像组成。
第三,我们将在线性回归和人工智能工具的帮助下培训新兵、临床医生。
科学家和研究人员致力于通过手工获取人类内耳组织并对其进行成像的技术
培训、模拟手术和教学研讨会(目标 3)。
通过外展活动、宣传我们的资源、数据共享和合作来了解人类内耳组织
(目标 4)。
完成这个为期 5 年的计划后,我们将组装并共享分子和光学单元
人类内耳图谱以及科学界对该资源的认识和利用的提高。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Gi-Lun Cheng其他文献
Alan Gi-Lun Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Gi-Lun Cheng', 18)}}的其他基金
Mentoring Patient Oriented Research in sensory disorders
指导以患者为导向的感觉障碍研究
- 批准号:
10644567 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Diversification of the mechanotransduction complex in vestibular hair cells
前庭毛细胞中机械转导复合体的多样化
- 批准号:
10734358 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Molecular basis of mammalian cochlear regeneration
哺乳动物耳蜗再生的分子基础
- 批准号:
10682272 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Stanford Clinician Scientist Training Program
斯坦福临床医生科学家培训计划
- 批准号:
10427050 - 财政年份:2022
- 资助金额:
$ 59.98万 - 项目类别:
Stanford Clinician Scientist Training Program
斯坦福临床医生科学家培训计划
- 批准号:
10591580 - 财政年份:2022
- 资助金额:
$ 59.98万 - 项目类别:
Clinician-scientist training program in otolaryngology
耳鼻喉科临床医生科学家培训计划
- 批准号:
10368168 - 财政年份:2016
- 资助金额:
$ 59.98万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mentoring Patient Oriented Research in sensory disorders
指导以患者为导向的感觉障碍研究
- 批准号:
10644567 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Real-time Multimodal Diffuse Reflectance and Polarization Imaging Based Nerve Identification in Surgical Field of View
基于实时多模态漫反射和偏振成像的手术视场神经识别
- 批准号:
10831112 - 财政年份:2020
- 资助金额:
$ 59.98万 - 项目类别: