1/4 Asian Bipolar Genetics Network (A-BIG-NET)
1/4 亚洲双相遗传学网络(A-BIG-NET)
基本信息
- 批准号:10706617
- 负责人:
- 金额:$ 198.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptedAdultAllelesAsiaAsianAsian AmericansAsian ancestryAsian populationBipolar DisorderClinicalCollaborationsComplementConsensusCountryDNADataDiseaseEast AsianEnvironmental Risk FactorEquityEuropeanEuropean ancestryFundingGene FrequencyGeneticGenetic DiseasesGenetic ResearchGenetic VariationGenetic studyGenomicsGenotypeIndiaInternationalJointsMapsMeasuresMental HealthMental disordersModelingMolecularMolecular GeneticsNational Institute of Mental HealthNatureOutcomePakistanPathogenesisPhenotypePlayPopulationPrevalenceProceduresProcessProductionProtocols documentationPublic HealthPublicationsQuality ControlRecordsReduce health disparitiesReportingResearchResearch PersonnelResearch Project GrantsResourcesRoleSamplingSampling StudiesSchizophreniaSingaporeSiteSouth AsianSouth KoreaTaiwanTimeUncertaintyVariantWorkcausal variantcohortcomparativedata archivedata collection sitedisorder subtypeenvironmental stressorexperiencefield studygene discoverygenetic architecturegenetic associationgenetic resourcegenetic risk factorgenetic signaturegenetic variantgenome sequencinggenomic datagenomic locushealth disparityhealth equityinsightneuropsychiatric disordernovelphenotypic datapleiotropismpolygenic risk scorepsychiatric genomicspsychogeneticsrare variantrecruitsevere psychiatric disorderweb portalwhole genome
项目摘要
PROJECT SUMMARY
Bipolar disorder (BP) is a severe multifactorial neuropsychiatric disorder that imposes a significant burden on
public health. The most recent large-scale genetic study of BP identified 64 associated genetic loci, providing
initial insights in BP pathogenesis. Yet, genetic discovery in BP lags behind other key psychiatric disorders. The
reported genetic loci only capture a small proportion of the total BP genetic liability, with many more variants
across the common and rare allele frequency spectrum remaining to be discovered. In addition, the previous
studied samples were of European ancestry, leaving population specific BP variants uncovered and uncertainty
in how the BP genetic findings generalize to other populations, exacerbating health disparities, and these studies
rarely employed “deep” phenotyping or assessed relevant environmental risk factors. This proposal brings
together an international collaboration of leading investigators from the U.S., Taiwan, South Korea, Singapore,
India, and Pakistan to form the Asian Bipolar Genetics Network (A-BIG-NET) and carry out a large-scale genetic
study of BP in East and South Asia. A-BIG-NET will generate a BP genetic resource of 27,500 cases and 16,000
controls with rich phenotypic information, measures of key environmental stressors and genetic data from 4x
low-pass whole genome sequencing (4xWGS). This will complement a schizophrenia genetics resource of
22,778 cases and 35,362 controls of Asian ancestry previously assembled by leaders of this network that will be
available for cross-disorder comparisons. Studying BP genetics in Asia is important to the world and the U.S.,
as Asia constitutes 57% of the world population, and Asian American comprises 6.6% of the U.S. population
(21.4 million). The five countries in A-BIG-NET cover 47% of all Asian populations. The specific aims of the
proposal are to: 1) recruit and deeply phenotype 17,500 BP cases, with a focus on BP-I to maximize homogeneity,
and 14,000 controls from four Asian countries; 2) carry out 4xWGS on all recruited samples plus 10,000 BP-I
cases and 2,000 controls collected by a previous study using similar procedures in Pakistan; and 3) carry out a
range of analyses to discover new genetic associations with BP-I across the allelic spectrum in East and South
Asian populations, examine the comparative genetic architecture of BP-I across major world populations and
with other major neuropsychiatric disorders, and perform a novel statistical fine-mapping analysis that leverages
the multi-ancestry genomic diversity and pleiotropy across psychiatric disorders to identify putative causal
variants. Aim 3 will also explore the genetic “validity” of various BP-I subtypes and fit models with joint genetic
and environmental risk factors. This proposal will dramatically increase the worldwide diversity of genetics data
on BP, an important step to accelerate gene discovery in this disorder and advance global mental health equity.
项目摘要
双相情感障碍(BP)是一种严重的多因素神经精神疾病,不可能在
公共卫生。 BP的最新大规模遗传研究确定了64个相关的遗传位置,提供
BP发病机理的初始见解。然而,BP的遗传发现落后于其他关键的精神病障碍。这
报道的遗传局部只捕获了总BP遗传责任的一小部分,还有更多变体
在公共和罕见的等位基因频谱中,仍有待发现的频谱。另外,以前
研究的样品是欧洲血统,使人口特定的BP变体发现了不确定性和不确定性
BP遗传发现如何推广到其他人群,加剧健康差异以及这些研究
很少使用“深”表型或评估相关的环境风险因素。该提议带来了
从美国,台湾,韩国,新加坡的主要调查员进行国际合作,
印度和巴基斯坦形成亚洲双极遗传学网络(A-big-net)并进行大规模遗传
东亚和南亚的BP研究。 A-BIG-NET将产生BP遗传资源27,500例和16,000例
具有丰富的表型信息的控制,关键环境压力源的度量和4倍的遗传数据
低通的整个基因组测序(4xWGS)。这将完成精神分裂症的遗传学资源
22,778个案例和35,362个对以前由该网络领导者组成的亚洲血统的控制
可用于跨境比较。在亚洲学习BP遗传学对世界和美国很重要,
作为亚洲宪法,占世界人口的57%,亚裔美国人占美国人口的6.6%
(2140万)。 A-big-net的五个国家占所有亚洲人口的47%。特定目标
建议是:1)招募和深度表型17,500 bp案例,重点是BP-I以最大化同质性,
来自四个亚洲国家的14,000个控制; 2)对所有招募样品加上10,000 bp-i进行4xwgs
先前研究使用巴基斯坦类似程序收集的病例和2,000例对照; 3)执行
在东部和南部的等位基因谱中发现与BP-I的新遗传关联的一系列分析范围
亚洲人群,检查BP-I在主要世界中的比较遗传结构
与其他主要的神经精神疾病一起进行,并进行新的统计精细图分析,以利用
跨精神病障碍的多项式基因组多样性和多效性,以识别推定的催化
变体。 AIM 3还将探索各种BP-I亚型的遗传“有效性”和与联合遗传的拟合模型
和环境风险因素。该建议将大大增加遗传学数据的多样性
关于BP,这是加速这种疾病中基因发现并促进全球心理健康公平的重要步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hailiang Huang其他文献
Hailiang Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hailiang Huang', 18)}}的其他基金
1/4 Asian Bipolar Genetics Network (A-BIG-NET)
1/4 亚洲双相遗传学网络(A-BIG-NET)
- 批准号:
10501841 - 财政年份:2022
- 资助金额:
$ 198.24万 - 项目类别:
Identification and characterization of inflammatory bowel disease causal variants
炎症性肠病致病变异的鉴定和表征
- 批准号:
10442851 - 财政年份:2022
- 资助金额:
$ 198.24万 - 项目类别:
Identification and characterization of inflammatory bowel disease causal variants
炎症性肠病致病变异的鉴定和表征
- 批准号:
10679091 - 财政年份:2022
- 资助金额:
$ 198.24万 - 项目类别:
Genetics and gene regulation in the inflammatory bowel diseases
炎症性肠病的遗传学和基因调控
- 批准号:
9564893 - 财政年份:2017
- 资助金额:
$ 198.24万 - 项目类别:
Genetics and gene regulation in the inflammatory bowel diseases
炎症性肠病的遗传学和基因调控
- 批准号:
9751298 - 财政年份:2017
- 资助金额:
$ 198.24万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Oral Disease Prevention Model in Long Term Care: WHO Systems Thinking Framework
长期护理中的口腔疾病预防模型:世界卫生组织系统思维框架
- 批准号:
10664642 - 财政年份:2023
- 资助金额:
$ 198.24万 - 项目类别:
Development and Pilot Study of Primary Care Loneliness Interventions to Prevent Suicide
预防自杀的初级保健孤独干预措施的开发和试点研究
- 批准号:
10646959 - 财政年份:2023
- 资助金额:
$ 198.24万 - 项目类别:
Feasibility of Network Interventions to Facilitate Community Coalition Adoption of Evidence-Based Strategies for Child Obesity Prevention
网络干预促进社区联盟采用循证儿童肥胖预防策略的可行性
- 批准号:
10738463 - 财政年份:2023
- 资助金额:
$ 198.24万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 198.24万 - 项目类别: