Functional Genomics of Bipolar Disorder
双相情感障碍的功能基因组学
基本信息
- 批准号:10703921
- 负责人:
- 金额:$ 313.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NCT00001174
Despite strong evidence of heritability and discovery of genetic markers for major mental illness, little is known about how gene expression in the brain differs across psychiatric diagnoses, or how inherited genetic risk factors shape these differences. We have studied expression of genes and gene transcripts in postmortem subgenual anterior cingulate cortex (sgACC), a key component of limbic circuits linked to mental illness. Deep sequencing was carried out in RNA obtained postmortem from 200 donors diagnosed with bipolar disorder, schizophrenia, major depression, or no psychiatric disorder. Case-control comparisons detected modest expression differences that were similar across disorders, although transcript-level differences were more pronounced. The 250 rare transcripts that were differentially expressed were enriched for genes involved in synapse formation, cell junctions, and heterotrimeric G-protein complexes. Relative abundances of alternatively spliced transcripts were associated with common genetic variants that accounted for disproportionate fractions of diagnosis-specific heritability. Inherited genetic risk factors shape the brain transcriptome and contribute to diagnostic differences between broad classes of mental illness.
We seek to model the impact of disease-related genes in cells derived from induced pluripotent stem cell (iPSC) lines. This project aims to explore ways in which we can use iPSC technology to study the biological impact of genes and genetic mutations that we identify in our other ongoing studies. Working with the National Heart, Lung and Blood Institute (NHLBI) stem cell core we have so far successfully reprogrammed fibroblasts into iPSCs from 89 study participants. We are developing a large iPSC-based resource and associated work-flows that constitute a living catalog of psychiatric risk alleles.
iPSC-derived cells are studied with high-resolution microscopic imaging, electrophysiology, and gene expression methods. These data could reveal differences between control and patient-derived cells and the impact of known and novel therapeutic agents. In collaboration with scientists at the New York Stem Cell Foundation Research Institute, we are also exploring ways to measure the functional impact of genetic mutations at the cellular level and use genome editing tools to establish a causal role for specific genetic mutations.
A previous proof-of-concept study demonstrated the value of iPSC-based assays for translating common, low-risk alleles identified by GWAS into novel genetic, neurobiological, and pharmacological insights. Currently we are working on methods to map regulatory chromatin contacts in neural progenitor cells. This will enable the identification of developmental stage and treatment specific influences on chromatin structure and gene expression.
Our ongoing copy number variant (CNV) studies examine known pathogenic CNVs in iPSC-derived neural cells and post-mortem brain. Over the past year, we carried out extensive morphological and transcriptomic characterization of neural cells carrying reciprocal CNVs (duplication or deletion) on chromosome 16p11.2. These CNVS have previously been associated with BD and other psychiatric disorders. Transcriptomic analyses indicated that most genes in the CNV region show expression changes in neurons that were consistent with copy number: increased in duplication carriers and decreased in deletion carriers. Many other genes were also dysregulated in carriers. Genes with concordant expression changes in carriers were enriched for several pathways, including neuronal growth and proliferation, synapse development, and cell migration. Consistent with these transcriptomic results, in vitro comparisons between carriers and matched non-carriers revealed major differences in cellular differentiation and growth and reduced synaptic structures. While non-carrier NPCs easily differentiated into mature astrocytes using standard protocols, NPCs carrying the 16p11.2 duplication did not. Astrocytes play a critical role in the development and maintenance of healthy neurons and synapses. Exogenous astrocytes from mouse rescued most of the neurodevelopmental and synaptic deficits in 16p11.2 duplication carriers. These results demonstrate that CNVs on 16p11.2 confer convergent effects on gene expression, leading to neurodevelopmental deficits that may play a causal role in psychiatric disorders. In the past year, we have also screened a variety of established and novel psychotropic medications to identify drugs that may rescue or ameliorate the impact of CNVs in neurons.
Multigenic disorders such as BD pose special challenges for experimental studies, since a single causative mutation is usually not identifiable. Thus we are also studying rare, single-gene disorders whose symptoms overlap with those seen in common mental illnesses. Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by behavioral abnormalities and disruptions in circadian rhythm. Cells from people living with SMS obtained in collaboration with Ann Smith (NHGRI) have been reprogrammed into iPSCs and differentiated into neurons and other brain cells. We have used these cells to explore gene-expression, molecular, and morphological traits associated with SMS mutations in cultured brain cells. The results suggest that SMS mutations cause increases in proliferation and neurite outgrowth especially among excitatory neurons, consistent with proposed excitation/inhibition imbalance models of pathogenesis. Findings from this study may have relevance to other neuropsychiatric disorders such as depression, autism, and BD.
A new set of studies started over this year aims to leverage novel, single-cell RNA sequencing methods to characterize gene expression changes in neurons at cellular resolution. These methods also allow us to detect changes in the proportions of neuronal cell types that may contribute to psychiatric illness.
Recent postmortem transcriptomic studies of human brain have shown hundreds of genes differentially expressed in donors with psychiatric illnesses. However, it is unclear which of these gene expression changes are the result of exposure to psychotropic medications rather than the illness itself. We have now explored this question using antipsychotic drug exposure in schizophrenia (SCZ) as a proof of concept. We compared differential gene expression in the prefrontal cortex from donors with SCZ who tested positive or negative for antipsychotics at the time of death. APD exposure was associated with numerous changes in the brain transcriptome, especially among donors exposed to atypical APDs. Brain transcriptome data from macaques chronically treated with APDs showed that APDs affect the expression of many functionally relevant genes, some of which show expression changes in the same directions as those observed in SCZ. In contrast, major cell type shifts inferred in SCZ were primarily unaffected by APD use. These results suggest that APD use confounds gene expression changes in postmortem brain tissue. Disentangling these effects will help identify causal genes and improve our neurobiological understanding of psychiatric disorders.
In the coming year, we will continue studies in neural cells and post-mortem brain tissue derived from people with psychiatric disorders, carriers of high-risk CNVs, and rare damaging mutations within GWAS or CNV loci that run together with BD and related conditions in families.
If successful, these projects will help unpack the biology behind genetic risk for mental illness, identify high-risk alleles, and shed new light on how risk alleles exert biological changes in the brain. The findings may ultimately identify new targets that lead to better methods of diagnosis and treatment for neuropsychiatric disorders.
NCT00001174
尽管有强有力的证据表明遗传性和发现主要精神疾病的遗传标记,但对于大脑中的基因表达如何在精神病诊断中有何不同,或者遗传遗传危险因素如何塑造这些差异。我们研究了基因和基因转录本在尸体后前扣带回皮层(SGACC)中的表达,这是与精神疾病相关的边缘电路的关键组成部分。深度测序是在RNA中进行的,该RNA是从诊断出患有躁郁症,精神分裂症,严重抑郁症或无精神病疾病的200名供体的尸体中获得的。病例对照比较检测到的适度表达差异在各种疾病之间相似,尽管转录级差异更为明显。 250种差异表达的稀有转录本富含参与突触形成,细胞连接和异三聚体G蛋白复合物的基因。剪接的转录本的相对丰度与常见的遗传变异有关,这些变异构成了特定于诊断的遗传力的不成比例的分数。遗传的遗传危险因素塑造了大脑转录组,并导致广泛精神疾病类别之间的诊断差异。
我们试图建模与疾病相关基因在诱导多能干细胞(IPSC)系的细胞中的影响。该项目旨在探索我们可以使用IPSC技术研究基因和基因突变的生物学影响的方式,这些突变和基因突变在其他正在进行的研究中都识别出来。与国家心脏,肺和血液研究所(NHLBI)干细胞核心合作,到目前为止,我们成功地将成纤维细胞重新编程为来自89位研究参与者的IPSC。我们正在开发一个基于IPSC的大型资源和相关的工作流,构成了精神病风险等位基因的生动目录。
使用高分辨率的微观成像,电生理学和基因表达方法研究了IPSC衍生的细胞。这些数据可以揭示对照和患者衍生细胞之间的差异以及已知和新型治疗剂的影响。与纽约干细胞基础研究所的科学家合作,我们还探索了衡量基因突变在细胞水平上的功能影响的方法,并使用基因组编辑工具来确定特定遗传突变的因果作用。
先前的概念验证研究证明了基于IPSC的测定法对将GWAS鉴定为新型遗传,神经生物学和药理见解的常见低风险等位基因的价值。目前,我们正在研究绘制神经祖细胞中调节性染色质接触的方法。这将使能够鉴定出发育阶段和治疗特定的对染色质结构和基因表达的影响。
我们正在进行的拷贝数变体(CNV)研究检查了IPSC衍生的神经细胞和验尸大脑中已知的致病性CNV。在过去的一年中,我们对16p11.2染色体上携带相互CNV的神经细胞(重复或删除)进行了广泛的形态和转录表征。这些CNV以前曾与BD和其他精神疾病有关。转录组分析表明,CNV区域中的大多数基因表现出与拷贝数一致的神经元的表达变化:重复载体的增加和缺失载体的减少。许多其他基因在载体中也失调。载体中具有一致表达变化的基因富含多种途径,包括神经元的生长和增殖,突触发育和细胞迁移。与这些转录组结果一致,载体与匹配的非载体之间的体外比较显示细胞分化,生长以及突触结构减少的主要差异。尽管使用标准方案轻松地将非载波NPC易于区分为成熟的星形胶质细胞,但携带16P11.2复制的NPC却没有。星形胶质细胞在健康神经元和突触的发展和维持中起着至关重要的作用。小鼠的外源星形胶质细胞拯救了16p11.2重复载体中的大多数神经发育和突触缺陷。这些结果表明,16P11.2上的CNV赋予基因表达的收敛作用,导致神经发育缺陷可能在精神疾病中起因果作用。在过去的一年中,我们还筛选了各种已建立的新型精神药物,以识别可能营救或改善CNV在神经元中的影响的药物。
多基因疾病(例如BD)对实验研究提出了特殊挑战,因为单个因果突变通常无法识别。因此,我们还研究了罕见的单基因疾病,其症状与常见的精神疾病中的症状重叠。 Smith-Magenis综合征(SMS)是一种神经发育障碍,其特征是行为异常和昼夜节律中断。与Ann Smith(NHGRI)合作获得的SMS的人的细胞已重新编程为IPSC,并分化为神经元和其他脑细胞。我们已经使用这些细胞来探索与培养的脑细胞中SMS突变相关的基因表达,分子和形态学特征。结果表明,SMS突变会导致增殖和神经突突变的增加,尤其是在兴奋性神经元中,这与提出的激发/抑制性发病机理模型一致。这项研究的发现可能与其他神经精神疾病(例如抑郁症,自闭症和BD)有相关性。
一年从今年开始的一系列研究旨在利用新型的单细胞RNA测序方法来表征细胞分辨率下神经元中基因表达的变化。这些方法还使我们能够检测可能导致精神病的神经元细胞类型的比例变化。
最近对人脑的死后转录组研究表明,在患有精神病的供体中,数百种基因表达了。但是,目前尚不清楚这些基因表达中的哪一个变化是暴露于精神药物而不是疾病本身的结果。现在,我们使用精神分裂症(SCZ)中的抗精神病药暴露作为概念证明了这个问题。我们比较了SCZ的供体的前额叶皮层中的差异基因表达,后者在死亡时测试了抗精神病药阳性或阴性。 APD暴露与大脑转录组的许多变化有关,尤其是在暴露于非典型APD的供体中。猕猴长期用APD处理的脑转录组数据表明,APD会影响许多功能相关基因的表达,其中一些显示出与SCZ中观察到的方向相同的方向上的表达变化。相反,SCZ中推断出的主要细胞类型转移主要不受APD使用的影响。这些结果表明,APD使用混杂的基因表达变化后尸检后脑组织中的基因表达变化。解开这些作用将有助于识别因果基因并改善我们对精神疾病的神经生物学理解。
在来年,我们将继续研究来自患有精神疾病的人,高风险CNV的载体,以及与家庭中BD和相关条件一起运行的GWAS或CNV基因座的罕见破坏性突变。
如果成功,这些项目将有助于解开精神疾病遗传风险背后的生物学,识别高风险等位基因,并为风险等位基因如何在大脑中施加生物学变化提供新的启示。这些发现最终可能确定了新的靶标,从而为神经精神疾病提供更好的诊断和治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Francis J McMahon的其他基金
GENETIC LINKAGE STUDIES IN BIPOLAR DISORDERS
双相情感障碍的遗传连锁研究
- 批准号:63927876392787
- 财政年份:2000
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
GENETIC LINKAGE STUDIES IN BIPOLAR DISORDERS
双相情感障碍的遗传连锁研究
- 批准号:61283706128370
- 财政年份:2000
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:28739042873904
- 财政年份:1999
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:60737336073733
- 财政年份:1999
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:61854836185483
- 财政年份:1999
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:24157872415787
- 财政年份:1996
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:26744382674438
- 财政年份:1996
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:22409222240922
- 财政年份:1996
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
A Collaborative Genomic Study of Bipolar Disorder
双相情感障碍的合作基因组研究
- 批准号:69827586982758
- 财政年份:
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
Identification of Genes Involved in Major Mood Disorders
鉴定与主要情绪障碍相关的基因
- 批准号:89399798939979
- 财政年份:
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:1075227410752274
- 财政年份:2024
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:1057718610577186
- 财政年份:2023
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
Illuminating multiplexed RNA dynamics to interrogate splicing in health and disease
阐明多重 RNA 动力学以探究健康和疾病中的剪接
- 批准号:1071392310713923
- 财政年份:2023
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
Investigate Host Gene Isoforms Contributing to HIV Persistence in Cocaine Users
研究导致可卡因吸食者中艾滋病毒持续存在的宿主基因亚型
- 批准号:1078899010788990
- 财政年份:2023
- 资助金额:$ 313.12万$ 313.12万
- 项目类别:
Role of RNA helicase Ddx5 in pathological cardiac remodeling
RNA解旋酶Ddx5在病理性心脏重塑中的作用
- 批准号:1071856010718560
- 财政年份:2023
- 资助金额:$ 313.12万$ 313.12万
- 项目类别: