Illuminating multiplexed RNA dynamics to interrogate splicing in health and disease
阐明多重 RNA 动力学以探究健康和疾病中的剪接
基本信息
- 批准号:10713923
- 负责人:
- 金额:$ 28.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlternative SplicingBiologicalBiological ModelsBody CompositionCell NucleusCell modelCell physiologyCellsComplexCuesCytoplasmic GranulesDNA Sequence AlterationDiseaseDisease ManagementFluorescenceFluorescence MicroscopyFoundationsFutureGene ExpressionGene Expression RegulationGoalsHealthHumanImaging DeviceIntronsInvestigationJoining ExonsLabelLinkMalignant NeoplasmsMammalian CellMessenger RNAOutcomePlayProcessProteinsRNARNA SplicingReactionRegulationResearchResearch PersonnelRoleSmall Nuclear RNASpliceosomesSystemTimeUntranslated RNAVisualizationWorkenvironmental stressorfluorescence lifetime imaginghuman diseaseimaging modalityinsightinterestnervous system disorderprogramsspatiotemporaltool
项目摘要
Ribonucleic acids (RNAs) play key roles in numerous cellular processes. A classic example is alternative
splicing, where the large megadalton spliceosome complex removes intron regions from the pre-messenger
RNA (pre-mRNA) and re-joins the exons to form the mature mRNA in the nucleus. The spliceosome consists
of protein and non-coding RNA components. Its assembly includes intricate maturation steps that are highly
regulated to ensure that the correct mature mRNA molecules are produced at the right time in healthy cells.
Achieving correct splicing of all mRNAs is subject to intense regulation, requiring a sophisticated interplay of
cellular cues and spatiotemporal dynamics of splicing components. Genetic mutations or environmental
stressors are perturbations that may affect the splicing process and outcomes. These are linked to human
disease states like cancer and neurological diseases. Together, the central role of complex spatiotemporal
RNA dynamics for proper splicing calls for the need to interrogate diverse RNAs live on a subcellular level over
time. The complexity of RNA species involved in splicing requires robust and versatile labeling strategies to
visualize multiple RNA molecules simultaneously and relative to other biological molecules of interest. A key
goal of this research program is to develop such a robust toolbox for multiplexed RNA visualization using
advanced fluorescence microscopy. Fluorescence lifetime imaging microscopy (FLIM) emerges as a
particularly versatile approach, as it is compatible with adding sophisticated imaging modalities. A central
feature that will be included in the proposed work is the ability to visualize multiple RNAs simultaneously,
including small non-coding RNAs with roles in splicing. More broadly, these RNA imaging tools will allow
researchers across different fields to investigate RNAs in a variety of relevant cell model systems. Alternative
splicing has been linked to formation of a type of cytosolic RNA-protein granules, called U-bodies.
Spliceosome RNAs (called U snRNAs) are the defining components of U-bodies, along with several proteins
that are implicated in the splicing reaction. U-bodies were observed across different cellular models, pointing to
a central role in gene regulation, but details about their precise composition and function remain elusive. This
research program will combine targeted investigation of U-bodies and the newly developed multiplexed RNA
fluorescence tagging tools to delineate mechanistic roles of U-bodies. U-body compositions and their
subcellular dynamics upon perturbation will be defined to delineate underlying cellular mechanisms. A possible
link between U-body dynamics and alternative splicing regulation will be investigated. As a long-term goal, the
role of U-bodies in splicing dynamics and regulation may be expanded upon across biological cell systems and
perturbations, revealing a previously unknown new layer of gene regulation. U-body components have been
linked with several human disease states, indicating that insights from this research program may shed light on
possible treatment and disease management strategies of human health in the future.
核糖核酸 (RNA) 在许多细胞过程中发挥着关键作用。一个经典的例子就是替代
剪接,其中大型兆道尔顿剪接体复合物从前信使中去除内含子区域
RNA(前mRNA)并重新连接外显子,在细胞核中形成成熟的mRNA。剪接体由
蛋白质和非编码RNA成分。它的组装包括复杂的成熟步骤,这些步骤非常复杂
进行调节以确保健康细胞在正确的时间产生正确的成熟 mRNA 分子。
实现所有 mRNA 的正确剪接都受到严格的调控,需要复杂的相互作用
剪接成分的细胞线索和时空动态。基因突变或环境因素
压力源是可能影响剪接过程和结果的扰动。这些都与人类息息相关
癌症和神经系统疾病等疾病状态。总之,复杂时空的核心作用
正确剪接的 RNA 动力学要求需要在亚细胞水平上实时探究不同的 RNA
时间。参与剪接的 RNA 种类非常复杂,需要稳健且通用的标记策略来
同时可视化多个 RNA 分子并相对于其他感兴趣的生物分子。一把钥匙
该研究项目的目标是开发一个强大的工具箱,用于多重 RNA 可视化,使用
先进的荧光显微镜。荧光寿命成像显微镜(FLIM)作为一种
特别通用的方法,因为它与添加复杂的成像模式兼容。一个中央
拟议工作中将包含的功能是同时可视化多个 RNA 的能力,
包括在剪接中发挥作用的小非编码 RNA。更广泛地说,这些 RNA 成像工具将允许
不同领域的研究人员在各种相关细胞模型系统中研究 RNA。选择
剪接与一种胞质 RNA 蛋白颗粒(称为 U 体)的形成有关。
剪接体 RNA(称为 U snRNA)是 U 体以及多种蛋白质的定义成分
与剪接反应有关的。在不同的细胞模型中观察到 U 体,表明
在基因调控中发挥着核心作用,但有关其精确组成和功能的细节仍然难以捉摸。这
研究计划将结合 U 体和新开发的多重 RNA 的针对性研究
荧光标记工具描述 U 体的机制作用。 U-体成分及其
将定义扰动时的亚细胞动力学来描述潜在的细胞机制。一个可能的
将研究 U 体动力学和选择性剪接调控之间的联系。作为一个长期目标,
U-体在剪接动力学和调节中的作用可能会扩展到生物细胞系统和
扰动,揭示了以前未知的新的基因调控层。 U型车身部件已
与几种人类疾病状态有关,表明该研究项目的见解可能有助于揭示
未来人类健康可能的治疗和疾病管理策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esther Braselmann其他文献
Esther Braselmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Esther Braselmann', 18)}}的其他基金
RNA tools for probing spliceosome dynamics
用于探测剪接体动力学的 RNA 工具
- 批准号:
10540416 - 财政年份:2021
- 资助金额:
$ 28.62万 - 项目类别:
RNA tools for probing spliceosome dynamics
用于探测剪接体动力学的 RNA 工具
- 批准号:
10305313 - 财政年份:2021
- 资助金额:
$ 28.62万 - 项目类别:
RNA tools for probing spliceosome dynamics
用于探测剪接体动力学的 RNA 工具
- 批准号:
10328275 - 财政年份:2021
- 资助金额:
$ 28.62万 - 项目类别:
RNA tools for probing spliceosome dynamics
用于探测剪接体动力学的 RNA 工具
- 批准号:
10222446 - 财政年份:2018
- 资助金额:
$ 28.62万 - 项目类别:
相似国自然基金
TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
- 批准号:82370111
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
- 批准号:82304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
- 批准号:82303784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
- 批准号:82373527
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
拟南芥剪接因子SR蛋白通过选择性剪接调控获得性耐热的机理研究
- 批准号:32300247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 28.62万 - 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 28.62万 - 项目类别:
Investigate Host Gene Isoforms Contributing to HIV Persistence in Cocaine Users
研究导致可卡因吸食者中艾滋病毒持续存在的宿主基因亚型
- 批准号:
10788990 - 财政年份:2023
- 资助金额:
$ 28.62万 - 项目类别:
Role of RNA helicase Ddx5 in pathological cardiac remodeling
RNA解旋酶Ddx5在病理性心脏重塑中的作用
- 批准号:
10718560 - 财政年份:2023
- 资助金额:
$ 28.62万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 28.62万 - 项目类别: