The cognitive mechanisms of complex planning
复杂规划的认知机制
基本信息
- 批准号:10704613
- 负责人:
- 金额:$ 27.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBehaviorBehavioralBehavioral ParadigmCognitiveCollaborationsComplexComputer ModelsComputing MethodologiesDataDecision MakingDecision TreesEffectiveness of InterventionsElectrophysiology (science)EyeEye MovementsFunctional Magnetic Resonance ImagingFundingFutureGoalsHumanImpairmentIndividualLengthLesionLifeLocationMeasurementMeasuresMental disordersMethodsModelingMydriasisNarrationObsessive-Compulsive DisorderPatientsPerformancePlayPositioning AttributeProcessPsyche structurePublishingResearchSportsTestingTextThinkingTimeTreesUnited States National Institutes of HealthWorkWritingautism spectrum disorderbehavior measurementclinically relevantcombinatorialdesignexperienceexperimental studyheuristicsimprovedindividuals with autism spectrum disorderlaboratory experimentnervous system disorderneuralneuroimagingneuromechanismnonhuman primatenovelpower analysisprogramssimulationtimelineverbal
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of this project is to lay the groundwork for understanding the neural basis of complex
planning. Planning, defined as sequential decision-making that involves mental simulation of
potential futures, is crucial for the organization of our behavior in everyday life — from
navigation to playing sports or writing a long text. Real-world planning is often “complex”, in the
sense that there is a explosively large number of possible futures and the decision-maker has to
think multiple steps ahead. By contrast, studies of human planning typically use simple tasks, in
which the number of possible states is low and thinking ahead is barely necessary. To serve as
a suitable behavioral paradigm to study complex planning, a task should meet multiple criteria: it
should require thinking ahead, it should be novel to subjects, it should have simple rules, and it
should allow for computational modeling in order to disentangle component processes. We
previously developed a behavioral paradigm that satisfies these requirements, as well as a
computational process model of choices in this task based on a heuristic value function and
partial tree search. This model can be used to estimate depth of planning (EDOP). The goals of
the present proposal are two-fold: to prepare the model for use in future neural studies by
establishing the construct validity of EDOP (Aim 1), and to go beyond choice data to probe the
dynamics of complex planning using eye movements made while a choice is being prepared
(Aim 2). Although this work does not have direct clinical relevance, it could in the future serve to
improve the behavioral and neural characterization of deficits in planning, as well as the
effectiveness of interventions. Planning is disrupted in many neurological and psychiatric
disorders. For example, performance on planning tasks is impaired in individuals with
Obsessive Compulsive Disorder, Autism Spectrum Disorder, and prefrontal lesions.
项目摘要/摘要
该项目的目的是为理解复杂的神经基础奠定基础
规划。计划,定义为顺序决策,涉及对
潜在的未来,对于我们日常生活中我们行为的组织至关重要 -
导航进行运动或写长文字。现实世界的计划通常是“复杂的”
感觉到有大量可能的未来,决策者必须
考虑多个步骤。相比之下,对人类计划的研究通常使用简单的任务
可能的状态数量很少,并且几乎没有必要。作为
一个合适的行为范式研究复杂的计划,任务应符合多个标准:它
应该需要提前思考,它应该是新颖的主题,它应该有简单的规则,并且
应该允许计算建模以解开组件进程。我们
以前开发了一个令人满意的行为范式,以及
根据启发式值函数和
部分树搜索。该模型可用于估计计划深度(EDOP)。目标
目前的提案是两个方面的:准备模型,以便在未来的神经研究中使用
建立EDOP的结构有效性(AIM 1),并超越选择数据以探测
准备选择时要进行选择的复杂计划的动态
(AIM 2)。尽管这项工作没有直接的临床相关性,但将来可能有
改善计划中缺陷的行为和神经表征以及
干预的有效性。在许多神经和精神病学中,计划中断了
疾病。例如,在计划任务方面的表现受到
强迫症,自闭症谱系障碍和前额叶病变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Ji Ma其他文献
Wei Ji Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Ji Ma', 18)}}的其他基金
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10746646 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别:
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10879238 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
- 批准号:
9767749 - 财政年份:2016
- 资助金额:
$ 27.24万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
- 批准号:
9246915 - 财政年份:2016
- 资助金额:
$ 27.24万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
- 批准号:
10002235 - 财政年份:2016
- 资助金额:
$ 27.24万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology
培养连接神经生物学的新一代计算神经科学家
- 批准号:
10002209 - 财政年份:2016
- 资助金额:
$ 27.24万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology
培养连接神经生物学的新一代计算神经科学家
- 批准号:
9316750 - 财政年份:2016
- 资助金额:
$ 27.24万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工智能反馈寻求行为的驱动机制和双刃剑效应研究
- 批准号:72302082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
消费者对算法决策的厌恶:行为表征、应对方式及干预措施
- 批准号:72302031
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别:
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
- 批准号:
10598974 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别:
Development of a Novel Virtual Reality Treatment for Emerging Adults with ADHD
开发一种针对患有多动症的新兴成人的新型虚拟现实治疗方法
- 批准号:
10721084 - 财政年份:2023
- 资助金额:
$ 27.24万 - 项目类别: