Beyond Gene Dosage: Understanding Down Syndrome via 4D Genome Organization
超越基因剂量:通过 4D 基因组组织了解唐氏综合症
基本信息
- 批准号:10689799
- 负责人:
- 金额:$ 62.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-18 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAffectAlzheimer&aposs DiseaseAmyloidAneuploidyArchitectureAreaAstrocytesBiological AssayBlack raceBrainBromodomainCRISPR interferenceCell Differentiation processCell NucleusCellsChIP-seqChemicalsChromatinChromosome 21Chromosome abnormalityChromosomesCongenital Heart DefectsDNADataDevelopmentDiseaseDisease modelDown SyndromeEarly Onset Alzheimer DiseaseEnhancersEpigenetic ProcessEtiologyGene DosageGene ExpressionGene Expression RegulationGenesGeneticGenetic DiseasesGenetic TranscriptionGenomeGoalsHematopoieticHi-CHistonesHomo sapiensHumanHuman ChromosomesHuman DevelopmentHuman GeneticsImpaired cognitionIn SituIndividualInfantInterphase ChromosomeKnowledgeLeftLightMalignant NeoplasmsMediatingMethodsMicrogliaModelingMolecularMuscle hypotoniaNeurodevelopmental DisorderNeurogliaNeuronsNuclear Pore ComplexOncogene DeregulationOrganoidsPathologicPatientsPhasePlayProteinsRNAReaderResearch PersonnelRoleTechniquesTechnologyTestingTherapeuticTrisomyUntranslated RNAWorkbrain cellcell typecongenital heart disorderdevelopmental diseasedisease phenotypeepigenetic drugepigenomeexperimental studygenome-widehistone modificationhuman diseaseinduced pluripotent stem cellinhibitorinsightnanoporenerve stem cellnovelnovel therapeutic interventionoptogeneticsprogramssuccesstooltranscriptome
项目摘要
ABSTRACT
Chromosomal aneuploidy underlies a variety of human diseases. The most prominent paradigm among these
is Down syndrome (DS) that is caused by an extra copy of homo sapiens chromosome 21 (HSA21). As the
most common genetic disease of human cognitive impairment, DS affects about 1 in 750 live-born infants in
the US, and it pre-disposes patients to muscle hypotonia, dysmorphic features, congenital heart defects and
early onset Alzheimer's disease. Despite many progress, our conceptual understanding of the pathological
basis of such chromosomal abnormality is so far largely limited to the “gene dosage hypothesis”, which
however cannot explain broad gene deregulation that takes place throughout the genome in specific cell types.
It has been unexplored that whether 3D genome mal-folding may play yet unrealized roles in DS and other
aneuploidies. Here, we assembled a strong team to test an overall hypothesis that the presence of trisomy 21
deregulates 3D genome as an entirety and changes gene expression in DS cells, particularly via forming
aberrant inter-chromosomal interactions (ICIs). We have two specific aims. In Aim-1, in multiple pairs of
isogenic iPSC cells and their derived neuron/glia cells that contain disomic versus trisomy HSA21, we will
conduct assays to systematically characterize their 3D genome (in situ Hi-C and PLAC-Seq), transcriptome
and 1D epigenome (PRO-Seq, ATAC-Seq, and histone modification ChIP-Seq). Integrative analyses will
dissect the aberrant chromatin interactomes, particularly these interchromosomal interactions altered in trisomy
nucleus, and correlate those with gene deregulation in specific developmental stages or cell types (neurons,
astrocytes or microglia). We will use leading-edge new techniques based on long reads sequencing to further
characterize aberrant inter-chromosomal interactions, and will validate them using DNA and/or RNA FISH. In
Aim-2, we focus on functionally dissecting the roles of aberrant inter-chromosomal interactions in gene
deregulation. This will be first investigated by chemical and epigenetic perturbation in both cultured primary
neural progenitor cells and in brain cortical organoids. We will then use novel optogenetic tools to model
disease-relevant formation of ICIs to deduce their potential causal roles in gene deregulation. The expected
results from this proposal are significant not only to our understanding of the 4D genome, but also to human
brain developmental disorders. The knowledge generated here will shed light on many forms of aneuploidy,
providing a new conceptual framework beyond “gene dosage effects” to understand gene deregulation, and
inspire strategies to ameliorate these diseases via restoring 3D genome architecture.
抽象的
染色体非整倍性是各种人类疾病的基础。其中最突出的范式
是唐氏综合症(DS),是由21(HSA21)的Homo Sapiens染色体额外副本引起的。作为
人类认知障碍最常见的遗传疾病,DS影响了750名活出生的婴儿中约1个
美国及其将患者预见到肌肉性肌张力低下,营养不良特征,先天性心脏缺陷和
早期发作阿尔茨海默氏病。尽管有很多进展,但我们对病理的概念理解
到目前为止,这种染色体异常的基础在很大程度上仅限于“基因剂量假设”
但是,无法解释在特定细胞类型中整个基因组中发生的广泛基因失调。
出乎意料的是,3D基因组折叠是否可能在DS和其他中扮演未实现的角色
非整倍性。在这里,我们组建了一个强大的团队,以检验一个总体假设,即三体术的存在21
取消结合3D基因组作为完整的,并改变DS细胞中的基因表达,尤其是通过形成
异常的染色体相互作用(ICIS)。我们有两个具体的目标。在AIM-1中,有多对
等基因IPSC细胞及其衍生的神经元/胶质细胞,其中包含病毒与三体性HSA21,我们将
进行系统的测定,以系统地表征其3D基因组(原位HI-C和PLAC-SEQ),转录组
和1D表观基因组(Pro-Seq,Atac-Seq和Hisstone修改芯片seq)。综合分析将
剖析异常染色质相互作用,尤其是这些在三体中发生了改变的这些染色体相互作用
细胞核,并在特定发育阶段或细胞类型(神经元,
星形胶质细胞或小胶质细胞)。我们将使用基于长读取测序的领先新技术来进一步
表征异常的染色体相互作用,并将使用DNA和/或RNA鱼类来验证它们。在
AIM-2,我们专注于在功能上剖析基因异常间相互作用的作用
放松管制。这将首先通过化学和表观遗传扰动在两个培养的原发性中进行研究
神经祖细胞和脑皮质器官中。然后,我们将使用新颖的光遗传学工具来建模
与疾病相关的ICI形成,以推断出其在基因放松管制中的潜在因果作用。预期
该提案的结果不仅对我们对4D基因组的理解至关重要,而且对人类也很重要
大脑发育障碍。这里产生的知识将阐明多种形式的非整倍性,
除了“基因剂量效应”以外,还提供了一个新的概念框架,以了解基因放松管制,并
通过恢复3D基因组体系结构来启发策略来改善这些疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenbo Li其他文献
Wenbo Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenbo Li', 18)}}的其他基金
Enhancer RNAs in brain gene regulation and Alzheimer's disease
大脑基因调控和阿尔茨海默病中的增强子 RNA
- 批准号:
10667052 - 财政年份:2023
- 资助金额:
$ 62.42万 - 项目类别:
Mechanisms Underlying Enhancer Rnp Mediated Gene Regulation And Genome Organization
增强子 Rnp 介导的基因调控和基因组组织的潜在机制
- 批准号:
10260610 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Mechanisms Underlying Enhancer Rnp Mediated Gene Regulation And Genome Organization
增强子 Rnp 介导的基因调控和基因组组织的潜在机制
- 批准号:
10687073 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Mechanisms Underlying Enhancer Rnp Mediated Gene Regulation And Genome Organization
增强子 Rnp 介导的基因调控和基因组组织的潜在机制
- 批准号:
10461048 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Beyond Gene Dosage: Understanding Down Syndrome via 4D Genome Organization
超越基因剂量:通过 4D 基因组组织了解唐氏综合症
- 批准号:
10487485 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Beyond Gene Dosage: Understanding Down Syndrome via 4D Genome Organization
超越基因剂量:通过 4D 基因组组织了解唐氏综合症
- 批准号:
10264939 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Mechanisms Underlying Enhancer Rnp Mediated Gene Regulation And Genome Organization
增强子 Rnp 介导的基因调控和基因组组织的潜在机制
- 批准号:
10389423 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Beyond Gene Dosage: Understanding Down Syndrome via 4D Genome Organization
超越基因剂量:通过 4D 基因组组织了解唐氏综合症
- 批准号:
10117780 - 财政年份:2020
- 资助金额:
$ 62.42万 - 项目类别:
Optogenetic Engineering of 3D Chromatin Architecture
3D 染色质结构的光遗传学工程
- 批准号:
10004126 - 财政年份:2019
- 资助金额:
$ 62.42万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 62.42万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 62.42万 - 项目类别:
Multi-modal profiling of spatially resolved cell types mediating opioid withdrawal
介导阿片类药物戒断的空间分辨细胞类型的多模式分析
- 批准号:
10787010 - 财政年份:2023
- 资助金额:
$ 62.42万 - 项目类别: