Precision Aging Network: Closing the Gap Between Cognitive Healthspan andHuman Lifespan

精准老龄化网络:缩小认知健康寿命与人类寿命之间的差距

基本信息

  • 批准号:
    10689301
  • 负责人:
  • 金额:
    $ 1193.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

SUMMARY/ABSTRACT: Overall Project The strategic vision of the Precision Aging Network (PAN) is to develop the essential scientific knowledge to understand the discrepancy that currently exists between cognitive healthspan and human lifespan. We must reveal the neural mechanisms that 1) account for optimal brain performance in old age resulting in healthy cognitive function, and 2) those that underlie decline in brain function leading to age-related cognitive impairment (ARCI), Alzheimer’s disease (AD), or Alzheimer’s disease-related dementias (ADRD). The ultimate goal of the PAN is to develop not only a strong scientific foundation for the essential knowledge needed to match cognitive healthspan with human lifespan, but also to leverage big data approaches that apply precision medicine concepts to prolong optimal brain function. To achieve this goal of sustaining optimal cognitive function in old age, and to extend quality of life for people across levels of risk for ARCI, AD, or ADRD, we maintain that methodologies such as those developed and implemented in the PAN will be required. Although ‘chronological age’ is consistently associated with increasing incidence of disability, including chronic brain disorders such as AD and ADRD, the exact mechanistic relationships between ‘biological age’ and decline in brain function is not known. The number of people now living with some form of dementia is estimated to be 50 million worldwide, which is expected to double every 20 years. Because of the enormous heterogeneity in brain and cognitive function among individuals in their 70s, 80s and 90s, the urgent challenge for science, medicine and healthcare providers is to discover interventions that are individually effective in delaying or preventing ARCI, AD, or ADRD. Untangling the complex relationship between age and cognitive performance requires a strategy that includes the study of very large, diverse, well-characterized and longitudinally sampled populations. This will require ‘big data’ but also the means to translate the massive amounts of information gathered into ‘smart data’ or ‘knowledge’. This demands radically different conceptual models. Currently, no single approach adequately identifies the means to modify personal aging trajectories for improved brain health in individuals. The approach proposed in PAN is designed to overcome obstacles of earlier methods. The focus is on how to distinguish the various combinations of age, sex, genetics, race-ethnicity, health, lifestyle choices and environmental factors that influence brain drivers that increase susceptibility to dysfunction, as well as those factors that increase brain protection and resistance against dysfunction. The fundamental principle of the precision medicine approach is to ’individualize’. This will enable strong and specific predictions for each person to close the gap between cognitive healthspan and human lifespan. The root of this concept is in the teachings of Hippocrates, who said – “It is more important to know what sort of person has a disease than to know what sort of disease a person has.”
摘要/摘要:总体项目 精准老龄化网络 (PAN) 的战略愿景是发展必要的科学知识, 我们必须了解目前认知健康寿命和人类寿命之间存在的差异。 揭示神经机制,1)解释老年时大脑的最佳表现,从而导致健康 认知功能,以及 2) 那些导致大脑功能下降并导致与年龄相关的认知功能下降的因素 损伤 (ARCI)、阿尔茨海默病 (AD) 或阿尔茨海默病相关痴呆 (ADRD)。 PAN 的目标不仅是为所需的基本知识奠定坚实的科学基础 将认知健康寿命与人类寿命相匹配,同时也利用大数据方法来实现精确性 延长最佳大脑功能的医学概念,以实现维持最佳认知的目标。 老年功能,并延长不同 ARCI、AD 或 ADRD 风险水平的人们的生活质量, 我们认为需要使用 PAN 中开发和实施的方法。 尽管“实际年龄”始终与残疾发生率增加相关,包括慢性残疾 AD 和 ADRD 等脑部疾病,“生物年龄”和“ADRD”之间的确切机制关系 目前尚不清楚有多少人患有某种形式的痴呆症。 据估计,全球有 5000 万,预计每 20 年就会翻一番。 70、80、90 岁人群大脑和认知功能的异质性是紧迫的挑战 对于科学、医学和医疗保健提供者来说,就是发现单独有效的干预措施 延迟或预防 ARCI、AD 或 ADRD。 理清年龄和认知表现之间的复杂关系需要采取一种策略,其中包括 这需要对非常大的、多样化的、特征明确的纵向抽样人群进行研究。 “大数据”也是将收集到的大量信息转化为“智能数据”或 “知识”。这需要完全不同的概念模型。目前,没有一种方法可以充分满足这一需求。 确定了改变个人衰老轨迹以改善个人大脑健康的方法。 PAN 中提出的方法旨在克服早期方法的障碍。 区分年龄、性别、遗传、种族、健康、生活方式选择的各种组合 影响大脑驱动因素的环境因素会增加功能障碍的易感性,以及 这些因素可以增强大脑保护和抵抗功能障碍的能力。 精准医疗方法的基本原则是“个体化”,这将带来强大的力量。 以及针对每个人的具体预测,以缩小认知健康寿命与人类之间的差距 这个概念的根源在于希波克拉底的教义,他说:“了解更重要。 什么样的人得了病,不如知道一个人得了什么样的病。”

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neuroimaging and verbal memory assessment in healthy aging adults using a portable low-field MRI scanner and a web-based platform: results from a proof-of-concept population-based cross-section study.
  • DOI:
    10.1007/s00429-022-02595-7
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Deoni SCL;Burton P;Beauchemin J;Cano-Lorente R;De Both MD;Johnson M;Ryan L;Huentelman MJ
  • 通讯作者:
    Huentelman MJ
Harnessing Speech-Derived Digital Biomarkers to Detect and Quantify Cognitive Decline Severity in Older Adults.
利用语音衍生的数字生物标记来检测和量化老年人的认知衰退严重程度。
  • DOI:
    10.1159/000536250
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Cay,Gozde;Pfeifer,ValeriaA;Lee,Myeounggon;Rouzi,MohammadDehghan;Nunes,AdonayS;El-Refaei,Nesreen;Momin,AnmolSalim;Atique,MdMoinUddin;Mehl,MatthiasR;Vaziri,Ashkan;Najafi,Bijan
  • 通讯作者:
    Najafi,Bijan
NISC: Neural Network-Imputation for Single-Cell RNA Sequencing and Cell Type Clustering.
  • DOI:
    10.3389/fgene.2022.847112
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
  • 通讯作者:
Predicting Working Memory in Healthy Older Adults Using Real-Life Language and Social Context Information: A Machine Learning Approach.
  • DOI:
    10.2196/28333
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ferrario A;Luo M;Polsinelli AJ;Moseley SA;Mehl MR;Yordanova K;Martin M;Demiray B
  • 通讯作者:
    Demiray B
Can we promote cognitive resilience in late-life depression?
  • DOI:
    10.1017/s1041610222000941
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Dotson, Vonetta M. M.
  • 通讯作者:
    Dotson, Vonetta M. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CAROL A. BARNES其他文献

CAROL A. BARNES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CAROL A. BARNES', 18)}}的其他基金

Frontal and Temporal Lobe Interactions in Rat Models of Normative Aging and Alzheimer's Disease
正常衰老和阿尔茨海默病大鼠模型中额叶和颞叶的相互作用
  • 批准号:
    10639909
  • 财政年份:
    2023
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Administrative Core (AC) Core A
行政核心 (AC) 核心 A
  • 批准号:
    10491844
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Administrative Core (AC) Core A
行政核心 (AC) 核心 A
  • 批准号:
    10270188
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
NPTX2: Preserving memory circuits in normative aging and Alzheimer's Disease
NPTX2:在正常衰老和阿尔茨海默病中保护记忆回路
  • 批准号:
    10214339
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Precision Aging Network: Closing the Gap Between Cognitive Healthspan andHuman Lifespan
精准老龄化网络:缩小认知健康寿命与人类寿命之间的差距
  • 批准号:
    10270187
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
NPTX2: Preserving memory circuits in normative aging and Alzheimer's Disease
NPTX2:在正常衰老和阿尔茨海默病中保护记忆回路
  • 批准号:
    10396587
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Precision Aging Network: Closing the Gap Between Cognitive Healthspan andHuman Lifespan
精准老龄化网络:缩小认知健康寿命与人类寿命之间的差距
  • 批准号:
    10491806
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Administrative Core (AC) Core A
行政核心 (AC) 核心 A
  • 批准号:
    10689303
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
NPTX2: Preserving memory circuits in normative aging and Alzheimer's Disease
NPTX2:在正常衰老和阿尔茨海默病中保护记忆回路
  • 批准号:
    10621736
  • 财政年份:
    2021
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Postdoctoral Training, Neurobiology of Aging and Alzheimer's Disease
博士后培训,衰老和阿尔茨海默病的神经生物学
  • 批准号:
    10419557
  • 财政年份:
    2016
  • 资助金额:
    $ 1193.66万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 1193.66万
  • 项目类别:
RP5 MPT Study
RP5 MPT 研究
  • 批准号:
    10595905
  • 财政年份:
    2023
  • 资助金额:
    $ 1193.66万
  • 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
  • 批准号:
    10678789
  • 财政年份:
    2023
  • 资助金额:
    $ 1193.66万
  • 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    $ 1193.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了