Ingestible gastric-resident electronic metamaterials architecture (iGEM) for the treatment of obesity
用于治疗肥胖症的可摄入胃驻留电子超材料架构(iGEM)
基本信息
- 批准号:10688246
- 负责人:
- 金额:$ 34.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAbdominal PainAdultAffectAirAnimal ModelArchitectureBiochemicalBody WeightBody Weight decreasedCardiovascular DiseasesChemicalsChronic DiseaseClinicalClinical ResearchComplexConsumptionDataDevicesDiabetes MellitusDissociationDoctor of PhilosophyDosage FormsEffectivenessElectric CapacitanceElectronicsEligibility DeterminationEndoscopyEnvironmentExcisionExcretory functionFeedbackFeelingFoundationsGastric BalloonGoalsHealthcareHybridsHypertensionImplantInterventionIntestinal ObstructionMagnetismMeasurementMeasuresMechanicsMetabolicMethodologyMonitorMorbidity - disease rateNauseaObesityObesity associated diseaseOperative Surgical ProceduresOralOral IngestionOutcomePatient SelectionPatientsPerforationPerformancePrintingQuality of lifeRefluxReportingResearchRiskRisk FactorsRuptureSafetySalineSatiationSerious Adverse EventStentsStomachStructureSystemTemperatureTimeTreatment EffectivenessUlcerVomitingWorkbariatric surgerybiomaterial compatibilitycostdesigndigitalexperiencegastrointestinal symptomimprovedinventionnovelobesity treatmentporcine modelprematurepressurepressure sensorpreventprogramsrational designresidencesensorsimulationtreatment strategywirelesswireless sensor
项目摘要
Project Summary
Obesity affects more than 1.4 billion adults worldwide and is a significant risk factor for chronic diseases such
as hypertension, diabetes, and cardiovascular diseases. Present non-operative treatment options of obesity are
woefully inadequate. Bariatric surgery is effective but invasive, costly, and associated with significant morbidity.
Intragastric balloons (IGB) have been demonstrated to be effective in enabling temporary weight loss (~25-30%
of excess body weight), allowing the improvement of metabolic parameters. However, IGB is a passive
mechanical construct that cannot be monitored or controlled upon insertion and require endoscopy delivery.
These fundamental attributes limit the reach of IGB to very selected patients as a temporary treatment or as a
bridging intervention to bariatric surgery despite its effectiveness. The proposed research will overcome the
fundamental limitations of IGB by creating an ingestible gastric-resident electronic-enhanced metamaterial
architecture (iGEM). In stark contrast to the current strategies, iGEM can transform obesity treatment with a
digital-based personalized and dynamic treatment strategy. iGEM allows the dynamic tuning of gastric restrictive
effect, which can be optimized based on safety consideration, patient’s treatment goals, and the quality of life
desired. For example, feedback-based control of the device distension can prevent excessive pressure point or
over-inflation that may lead to ulcer formation; or to avoid intestinal obstruction due to premature disintegration.
The ability to adjust gastric restrictive pressure can enhance treatment effectiveness to account for gastric
accommodation. The ability to acquire sensing data can help elucidate the complex relationship between the
restrictive effect of intragastric devices and treatment effectiveness. This research leverages Kong’s expertise
in creating entirely 3D printable electronics and ingestible electronics, (2) Wang’s (Ph.D.) expertise in meta-
materials design, and (3) Fang’s (M.D.) extensive clinical and clinical research experience in IGB usage and
intragastric devices. Specifically, we will (1) develop wireless resonant-enhanced 3D printable gastric pressure
sensors with a hybrid core-shell printing methodology that allow the integration of pressure sensors on a wide
range of intragastric systems; (2) develop wirelessly triggered transformable active metamaterials architecture
that is capable of achieving wirelessly triggered reversible structural reconfiguration, allowing the oral ingestion
of the device, dynamic control of expansion to tailor gastric restriction effect and the safe excretion of the device
without risk of intestinal obstruction; (3) develop and evaluate iGEM longitudinal wireless pressure sensing and
triggerable volume control capability that can sustain the complex and dynamic gastric environment for a
prolonged period of time (30 days). Upon completion of the proposed research, the foundation established by
this proposed work is also applicable to include a wide range of inductance/capacitance-based sensors
(temperature, biochemical, bacterial), as well as various ingestible or implantable systems such as stents,
enabling multivariate longitudinal sensing and unprecedented control.
项目摘要
肥胖症影响着全球超过14亿的成年人,是慢性疾病的重要危险因素
作为高血压,糖尿病和心血管疾病。肥胖的目前的非手术治疗选择是
悲惨地不足。减肥手术是有效的,但具有侵入性,昂贵,并且与明显的发病率有关。
胃内气球(IGB)已被证明可以有效造成临时体重减轻(〜25-30%
体重过大),可以改善代谢参数。但是,IGB是被动的
在插入时无法监测或控制的机械构造并需要内窥镜递送。
这些基本属性将IGB的影响限制为非常选择的患者作为临时治疗或作为一种
将干预措施桥接到减肥手术中迫切有效。拟议的研究将克服
IGB的基本局限
建筑(IGEM)。与当前的策略形成鲜明对比,IGEM可以通过
基于数字的个性化和动态治疗策略。 IGEM允许动态调整胃限制性
效果,可以根据安全考虑,患者的治疗目标和生活质量进行优化
需要。例如,基于反馈的设备扩张的控制可以防止压力点过多或
过度充气,可能导致溃疡形成;或避免由于过早瓦解而引起的肠道异议。
调节胃限制压力的能力可以提高治疗有效性以考虑胃
住宿。获取传感数据的能力可以帮助阐明
胃内装置和治疗效果的限制性作用。这项研究利用了孔的专业知识
在创建完全3D可打印的电子和可设备的电子产品时,(2)Wang's(Ph.D.)Meta--
材料设计,以及(3)Fang(M.D.)IGB使用方面的广泛临床和临床研究经验
胃内设备。特别是,我们将(1)发展无线谐振3D可打印胃压
具有混合芯壳打印方法的传感器,允许在宽度上集成压力传感器
胃内系统范围; (2)开发无线触发可转换的活动超材料体系结构
能够实现无线触发可逆的结构重新配置,使口服摄入
设备的动态控制对量身定制胃限制效果的动态控制和设备的安全排泄
没有肠道异议的风险; (3)开发和评估IGEM纵向无线压力感测和
可触发的体积控制能力,可以维持复杂而动态的胃环境
长时间的时间(30天)。拟议研究完成后,基金会建立了
这项提出的工作也适用于包括各种电感/电容传感器
(温度,生化,细菌)以及各种可植入或植入系统(例如支架)
实现多元纵向感应和前所未有的控制。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ingestible Functional Magnetic Robot with Localized Flexibility (MR‐LF)
- DOI:10.1002/aisy.202200166
- 发表时间:2022-09
- 期刊:
- 影响因子:7.4
- 作者:Taylor E. Greenwood;Henry Cagle;Benson Pulver;O. S. Pak;Y. L. Kong
- 通讯作者:Taylor E. Greenwood;Henry Cagle;Benson Pulver;O. S. Pak;Y. L. Kong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONG LIN KONG其他文献
YONG LIN KONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
The role of distal aqueous humor outflow tissue in glucocorticoid-induced glaucoma
远端房水流出组织在糖皮质激素诱发青光眼中的作用
- 批准号:
10667863 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别: