Optimization of diagnostic accuracy, radiation dose, and patient throughput for cardiac SPECT via advanced and clinically practical cardiac-respiratory motion correction and deep learning
通过先进且临床实用的心肺运动校正和深度学习,优化心脏 SPECT 的诊断准确性、辐射剂量和患者吞吐量
基本信息
- 批准号:10685488
- 负责人:
- 金额:$ 77.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAccountingAddressAdvocateAlgorithmsAmericanCardiacClinicClinicalCompensationComputer softwareCoronary ArteriosclerosisDataDefectDevelopmentDiagnosisDiagnosticDiseaseDoseEffectivenessElderlyElectromagnetic EnergyEvaluationExposure toFunctional ImagingGoalsHealth Care CostsImageImaging TechniquesInstitutionLeft Ventricular FunctionLife ExpectancyMeasuresMechanicsMedical ImagingMethodsModalityMorphologic artifactsMotionMyocardial perfusionNoiseNuclearObesityPatientsPerformancePerfusionPhotonsPlayPopulationPrevalenceProtocols documentationRadiation Dose UnitRadiation exposureReaderRecommendationResolutionRiskRoleScanningSignal TransductionSocietiesSystemTask PerformancesTechniquesTechnologyTimeTranslatingValidationVisualizationWorkX-Ray Computed Tomographyattenuationbasecardiac single photon emission computed tomographyclinical carecostdeep learningdenoisingdenoising deep learningdiagnostic accuracyheart motionhemodynamicsimage processingimage reconstructionimaging modalityimaging systemimprovedinnovationobese patientsperfusion imagingpreservationprognosticquantumradiation riskradiologistreconstructionrespiratorysingle photon emission computed tomographytoolvisual tracking
项目摘要
Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is widely used
to detect and evaluate coronary artery disease. The goal of this project is to reduce the radiation dose and/or
scan time of SPECT MPI by a combined factor of 16x, while maintaining or increasing diagnostic accuracy. This
would enable SPECT MPI to be performed, e.g., with 4x reduced radiation dose and 4x shorter scan time (~2.5
minutes) than typical protocols. Radiation dose in SPECT MPI has been recognized as an important
issue, accounting for ~25% of all radiation exposure to patients in medical imaging. Dose reduction
particularly addresses the increased prevalence of obese patients (who receive higher dose) and younger
cardiac patients (whose radiation risk is higher due to longer life expectancy). Reduction in scan time
would improve comfort for elderly and infirm cardiac patients, while mitigating body-motion image
artifacts and reducing healthcare costs by increasing clinical throughput. We will reduce dose and scan time
through innovative image reconstruction methods that involve little or no cost and require no additional
patient setup steps. We will employ new respiratory and cardiac motion compensation to reduce image
artifacts, as well as new deep learning techniques, which will be used for both respiratory-signal estimation
and high-performance denoising. We will methodically optimize these techniques and then validate our
algorithms in multicenter clinical reader studies.
SA1: Develop clinically practical respiratory motion surrogates for low-count studies. T1: Perfect data-
driven respiratory surrogate estimation; T2: Optimize data-driven surrogate estimation at reduced counts; T3:
Develop and clinically validate depth-sensing cameras for respiratory and body-motion surrogate estimation;
T4: Generalization of data-driven surrogate estimation to SPECT systems not having a CT.
SA2: Develop deep-learning reconstruction methods and optimize for diagnostic accuracy and dose/scan
time. T1: Post-reconstruction DL denoising algorithms for 3D perfusion images for reduced-count and standard-
count studies; T2: DL denoising algorithms for 4D cardiac-gated studies; T3: 4D reconstruction with embedded
DL denoising, cardiac motion estimation and correction; and T4: DL reconstruction methods with both RMC
and CMC, with projection data binned using respiratory surrogate signals derived in SA1.
SA3: Perform multicenter clinical reader studies (6 clinicians, 3 institutions) to validate the new
algorithms and compare to current clinically-available methods based on diagnostic performance and
repeatability in assessing both perfusion and wall motion defects. T1: In comparison to baseline clinical
reconstruction, evaluate added benefit of: a) including attenuation and scatter correction, and b) additionally
including RMC; T2: Validate DL for improvement of perfusion and function (wall motion) task performance at
full-count levels; and T3: Validate DL for improvement of task performance at reduced counts.
单光子发射计算机断层扫描(SPECT)心肌灌注成像(MPI)被广泛使用
检测和评估冠状动脉疾病。该项目的目的是减少辐射剂量和/或
在保持或提高诊断准确性的同时,扫描SPECT MPI的扫描时间为16倍。这
可以执行SPECT MPI,例如,降低了4倍的辐射剂量和短4倍的扫描时间(〜2.5
分钟)比典型协议。 SPECT MPI中的辐射剂量已被认为是重要的
问题,占医疗成像中患者所有放射线的约25%。减少剂量
特别解决了肥胖患者(接受较高剂量)和年轻患者的患病率的增加
心脏患者(由于预期寿命较长,其辐射风险更高)。减少扫描时间
在减轻身体运动图像的同时,会改善老年人和体弱的心脏病患者的舒适感
通过增加临床吞吐量来减少伪像和降低医疗保健成本。我们将减少剂量和扫描时间
通过创新的图像重建方法几乎没有成本,不需要额外
患者设置步骤。我们将采用新的呼吸和心脏运动补偿来减少图像
工件以及新的深度学习技术,将用于两种呼吸估计
和高性能的降级。我们将有条不紊地优化这些技术,然后验证我们的
多中心临床读取器研究中的算法。
SA1:开发临床上实用的呼吸运动代理,以进行低计数研究。 T1:完美数据 -
驱动的呼吸替代估计; T2:在减少计数时优化数据驱动的替代估计; T3:
开发和临床验证深度感应摄像头,以进行呼吸和运动替代估计;
T4:数据驱动的替代估计对没有CT的SPECT系统的概括。
SA2:开发深度学习的重建方法并优化以诊断准确性和剂量/扫描
时间。 T1:用于3D灌注图像的重建后DL DENO算法,用于降低计数和标准 -
计数研究; T2:DL DeNo算法进行4D心脏门控研究; T3:4D重建与嵌入式的重建
DL降解,心运动估计和校正;和T4:两种RMC的DL重建方法
和CMC,具有使用SA1中呼吸道替代信号进行投影数据。
SA3:执行多中心临床读者研究(6位临床医生,3个机构)来验证新的
算法和基于诊断性能和
评估灌注和壁运动缺陷时的可重复性。 T1:与基线临床相比
重建,评估附加的好处:a)包括衰减和分散校正,b)另外
包括RMC; T2:验证DL以改善灌注和功能(壁运动)任务性能
全计数;和T3:验证DL以改善降低计数的任务绩效。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A cadaveric breast cancer tissue phantom for phase-contrast X-ray imaging applications.
- DOI:10.1002/ame2.12340
- 发表时间:2023-10
- 期刊:
- 影响因子:3.7
- 作者:Rounds, Cody C.;Li, Chengyue;Zhou, Wei;Tichauer, Kenneth M.;Brankov, Jovan G.
- 通讯作者:Brankov, Jovan G.
Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising.
- DOI:10.1007/s12350-021-02676-w
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Data-driven respiratory signal estimation from temporally finely sampled projection data in conventional cardiac perfusion SPECT imaging.
- DOI:10.1002/mp.15391
- 发表时间:2022-01
- 期刊:
- 影响因子:3.8
- 作者:
- 通讯作者:
Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
- DOI:10.1002/mp.14577
- 发表时间:2021-01
- 期刊:
- 影响因子:3.8
- 作者:Liu J;Yang Y;Wernick MN;Pretorius PH;King MA
- 通讯作者:King MA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A King其他文献
High Resolution Imaging of Superior Sagittal Lymphatic Vasculature in Dedicated Brain SPECT
专用脑部 SPECT 中上矢状淋巴管系统的高分辨率成像
- DOI:
10.1109/nss/mic44845.2022.10398996 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
K. Kalluri;Parth Mathur;S. Pells;Benjamin Auer;Micaehla May;P. Segars;Phillip H Kuo;L. Furenlid;Michael A King - 通讯作者:
Michael A King
Michael A King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A King', 18)}}的其他基金
Optimization of diagnostic accuracy, radiation dose, and patient throughput for cardiac SPECT via advanced and clinically practical cardiac-respiratory motion correction and deep learning
通过先进且临床实用的心肺运动校正和深度学习,优化心脏 SPECT 的诊断准确性、辐射剂量和患者吞吐量
- 批准号:
10172974 - 财政年份:2020
- 资助金额:
$ 77.33万 - 项目类别:
Optimization of diagnostic accuracy, radiation dose, and patient throughput for cardiac SPECT via advanced and clinically practical cardiac-respiratory motion correction and deep learning
通过先进且临床实用的心肺运动校正和深度学习,优化心脏 SPECT 的诊断准确性、辐射剂量和患者吞吐量
- 批准号:
10456630 - 财政年份:2020
- 资助金额:
$ 77.33万 - 项目类别:
Combined Multi-Pinhole and Fan-Beam Brain SPECT
结合多针孔和扇束脑 SPECT
- 批准号:
9562187 - 财政年份:2016
- 资助金额:
$ 77.33万 - 项目类别:
Combined Multi-Pinhole and Fan-Beam Brain SPECT
结合多针孔和扇束脑 SPECT
- 批准号:
9082307 - 财政年份:2016
- 资助金额:
$ 77.33万 - 项目类别:
Probing Dose Limits in Cardiac SPECT with Reconstruction and Personalized Imaging
通过重建和个性化成像探测心脏 SPECT 的剂量限制
- 批准号:
9061011 - 财政年份:2014
- 资助金额:
$ 77.33万 - 项目类别:
Probing Dose Limits in Cardiac SPECT with Reconstruction and Personalized Imaging
通过重建和个性化成像探测心脏 SPECT 的剂量限制
- 批准号:
8674683 - 财政年份:2014
- 资助金额:
$ 77.33万 - 项目类别:
Combined Multi-Pinhole and Fan-Beam Brain SPECT
结合多针孔和扇束脑 SPECT
- 批准号:
8670742 - 财政年份:2013
- 资助金额:
$ 77.33万 - 项目类别:
Combined Multi-Pinhole and Fan-Beam Brain SPECT
结合多针孔和扇束脑 SPECT
- 批准号:
8583876 - 财政年份:2013
- 资助金额:
$ 77.33万 - 项目类别:
HYDRODYNAMIC INTERACTIONS/CELL DEFORMATION IN NEUTROPHIL
中性粒细胞的流体动力学相互作用/细胞变形
- 批准号:
6932953 - 财政年份:2004
- 资助金额:
$ 77.33万 - 项目类别:
AAV VECTORS FOR ALZHEIMER'S DISEASE MODELING AND THERAPY
用于阿尔茨海默病建模和治疗的 AAV 载体
- 批准号:
6885142 - 财政年份:2004
- 资助金额:
$ 77.33万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
4D成像技术研究及其在龙门山断裂带介质演化中的应用
- 批准号:41674090
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
- 批准号:
10736347 - 财政年份:2023
- 资助金额:
$ 77.33万 - 项目类别:
Impact of Blood Viscosity and Vascular Compliance on Fontan Circulation Dysfunction in Children
血液粘度和血管顺应性对儿童Fontan循环障碍的影响
- 批准号:
10579966 - 财政年份:2022
- 资助金额:
$ 77.33万 - 项目类别:
Impact of Blood Viscosity and Vascular Compliance on Fontan Circulation Dysfunction in Children
血液粘度和血管顺应性对儿童Fontan循环障碍的影响
- 批准号:
10350382 - 财政年份:2022
- 资助金额:
$ 77.33万 - 项目类别:
Optimization of diagnostic accuracy, radiation dose, and patient throughput for cardiac SPECT via advanced and clinically practical cardiac-respiratory motion correction and deep learning
通过先进且临床实用的心肺运动校正和深度学习,优化心脏 SPECT 的诊断准确性、辐射剂量和患者吞吐量
- 批准号:
10172974 - 财政年份:2020
- 资助金额:
$ 77.33万 - 项目类别:
Optimization of diagnostic accuracy, radiation dose, and patient throughput for cardiac SPECT via advanced and clinically practical cardiac-respiratory motion correction and deep learning
通过先进且临床实用的心肺运动校正和深度学习,优化心脏 SPECT 的诊断准确性、辐射剂量和患者吞吐量
- 批准号:
10456630 - 财政年份:2020
- 资助金额:
$ 77.33万 - 项目类别: