Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers
改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物
基本信息
- 批准号:10685325
- 负责人:
- 金额:$ 66.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-23 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccountingAcuteAffectAmericanAneurysmAnimalsArteriesBiomechanicsBrainBrain AneurysmsBrain InjuriesBrain hemorrhageCalibrationCathetersCause of DeathCirculationClassificationClinicalClinical TreatmentCollaborationsComplexDataDevelopmentDevicesDilatation - actionEffectivenessElastasesElementsEvaluation StudiesExpenditureGelGeometryGoalsHospitalsImplantIn VitroIncidenceIndianaIndividualIntracranial AneurysmLeftLiquid substanceMechanicsMedicineMemoryMethodsModelingMorphologyNeckNew ZealandOklahomaOryctolagus cuniculusPatientsPerformancePolymersPorosityPremature MortalityPreventivePrintingProcessPropertyProtocols documentationRecoveryRecurrenceReportingResearchResearch PersonnelResidual stateRetreatmentRuptureRuptured AneurysmSamplingScienceShapesStrokeStructureSubarachnoid HemorrhageSystemTechniquesTestingTherapeutic EmbolizationTissuesTreatment outcomeUnited StatesUniversitiesUrethanecompare effectivenessdesigndisabilityexperienceexperimental studyfabricationhemodynamicsimprovedimproved outcomein silicoin vivoiterative designmanufacturemanufacturing processmechanical propertiesmicrodeviceminimally invasivemortalitynervous system disorderneurosurgerynovelpreventprophylacticthrombogenesistranslational medicine
项目摘要
Project Summary/Abstract
Subarachnoid hemorrhage (SAH) is a devasting acute neurological disease that remains a major cause of
premature mortality. SAH is most caused by incidental rupture of an intracranial aneurysm (ICA). The mortality
rate of aneurysm rupture can reach as high as 40% within the first week of incidence. Even if the aneurysm is
treated in a timely manner, the chance of moderate to severe brain damage is 20-35%. Endovascular coil
embolization is the current gold-standard, minimally invasive therapy of ICAs; however, emerging clinical
challenges of coil embolization are unsatisfactory aneurysm recurrence rates: ~44% by 5-6 years after the initial
coil therapy (of which more than 50% requiring re-treatment), and suboptimal complete occlusion, especially for
treating wide-necked ICAs and/or aneurysms with a complex 3D geometry. Thus, there is a need for a durable
device to treat unruptured ICAs that targets patient-specific aneurysms and intra-aneurysmal circulation and
provides long-lasting complete occlusion. Our research objectives of this project are to: 1) design and fabricate
personalized embolic devices for treating saccular, bifurcated IACs using additive manufacturing and a combined
experimental/biomechanical approach, and 2) provide a holistic biomechanical and hemodynamic comparison
between our device and other selected endovascular embolic techniques. This proposal builds upon the
assembled preliminary data, and leverages Dr. Lee’s experience with tissue biomechanics and in-silico
modeling, in collaboration with polymer science and additive manufacturing researchers at the University of
Oklahoma, clinical and neurosurgical expertise of clinicians at Indiana University – Medicine, and micro-device
and catheter expert at Purdue. Specifically, we propose to design, develop, and evaluate patient-specific SMP
embolic devices using 3D printing-based polymer fabrication. Our embolic devices are designated to target
personalized aneurysm filling and maximize the rate of long-lasting complete occlusion. Next, through in-vitro
flow loop testbed and in-vivo small animal studies, the efficacy and aneurysm occlusion of our personalized
embolic devices will be systematically evaluated in comparison to the clinical gold standard as well as three other
contemporary embolic methods. The endpoint of this project will be a cutting-edge solution for ICA embolization,
that uses fundamental information on aneurysms based on holistic biomechanical and hemodynamic analyses
– allowing individual-optimized aneurysm filling to achieve immediate & long-term complete occlusion and reduce
aneurysm recurrence. Collectively, our developments will serve as a logical first step toward attaining our long-
term goal to advance the state of the art in translational medicine by facilitating personalized, preventive
management of unruptured ICAs and reduce aneurysm rupture-induced hemorrhagic strokes.
项目摘要/摘要
亚蛛网膜下腔出血(SAH)是一种破坏性的急性神经系统疾病,仍然是
过早死亡。 SAH最多是由颅内动脉瘤(ICA)的偶然破裂引起的。死亡率
在事件发生的第一周内,动脉瘤破裂的速率可达到40%。即使动脉瘤是
及时治疗中度至重度脑损伤的机会为20-35%。血管内线圈
栓塞是ICA的当前金色标准,微创疗法。但是,新兴的临床
线圈栓塞的挑战是不令人满意的动脉瘤复发率:〜44%到最初的5 - 6年
线圈疗法(其中超过50%需要重新治疗)和次优完全闭塞,尤其是针对
用复杂的3D几何形状处理宽领的ICA和/或动脉瘤。那需要耐用的
处理针对患者特异性动脉瘤和内神经瘤循环和
提供持久的完整闭塞。我们对该项目的研究目标是:1)设计和制造
个性化的栓塞设备,用于使用增材制造和合并
实验/生物力学方法,以及2)提供整体生物力学和血液动力学比较
在我们的设备和其他选定的血管内栓塞技术之间。该建议建立在
组装的初步数据,并利用Lee博士在组织生物力学和silico的经验
与聚合物科学和添加剂制造研究人员合作建模
俄克拉荷马州,印第安纳大学临床医生的临床和神经外科专业知识 - 医学和微设备
和普渡大学的成型专家。具体而言,我们建议设计,开发和评估患者特定的SMP
使用基于3D打印的聚合物制造的栓塞设备。我们的栓塞设备被指定为目标
个性化动脉瘤填充并最大化持久的完全闭塞速度。接下来,通过视野
流环测试床和体内小动物研究,我们个性化的效率和动脉瘤阻塞
与临床黄金标准以及其他三个
当代栓塞方法。该项目的终点将是用于ICA栓塞的尖端解决方案,
它使用基于整体生物力学和血液动力学分析的动脉瘤的基本信息
- 允许个人优化的动脉瘤填充以实现立即和长期的完全闭塞并减少
动脉瘤复发。总的来说,我们的发展将成为实现我们长期的逻辑第一步
通过支持个性化的预防性来推动转化医学中最新艺术的术语目标
对未破裂的ICA的管理并减少了动脉瘤破裂引起的出血性中风。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An investigation of how specimen dimensions affect biaxial mechanical characterizations with CellScale BioTester and constitutive modeling of porcine tricuspid valve leaflets
使用 CellScale BioTester 和猪三尖瓣小叶的本构模型研究样本尺寸如何影响双轴机械特性
- DOI:10.1016/j.jbiomech.2023.111829
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Laurence, Devin W.;Wang, Shuodao;Xiao, Rui;Qian, Jin;Mir, Arshid;Burkhart, Harold M.;Holzapfel, Gerhard A.;Lee, Chung-Hao
- 通讯作者:Lee, Chung-Hao
MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
MetaNO:如何转移您学习隐藏物理的知识。
- DOI:10.1016/j.cma.2023.116280
- 发表时间:2023
- 期刊:
- 影响因子:7.2
- 作者:Zhang,Lu;You,Huaiqian;Gao,Tian;Yu,Mo;Lee,Chung-Hao;Yu,Yue
- 通讯作者:Yu,Yue
Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
- DOI:10.1016/j.actbio.2022.07.036
- 发表时间:2022-09-15
- 期刊:
- 影响因子:9.7
- 作者:Pineda-Castillo, Sergio A.;Aparicio-Ruiz, Santiago;Burns, Madison M.;Laurence, Devin W.;Bradshaw, Elizabeth;Gu, Tingting;Holzapfel, Gerhard A.;Lee, Chung-Hao
- 通讯作者:Lee, Chung-Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung-Hao Lee其他文献
Chung-Hao Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 66.03万 - 项目类别:
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10450665 - 财政年份:2021
- 资助金额:
$ 66.03万 - 项目类别:
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10676966 - 财政年份:2021
- 资助金额:
$ 66.03万 - 项目类别:
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10315198 - 财政年份:2021
- 资助金额:
$ 66.03万 - 项目类别:
3D Printed Biomimetic Bioglass-Gradient Matrices for ACL Reconstruction
用于 ACL 重建的 3D 打印仿生生物玻璃梯度矩阵
- 批准号:
9232729 - 财政年份:2017
- 资助金额:
$ 66.03万 - 项目类别: