Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
基本信息
- 批准号:10676966
- 负责人:
- 金额:$ 4.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccountingAddressAlgorithmsAnatomyAreaBiopsyBronchoscopesBronchoscopyCancer EtiologyCessation of lifeClinicalClinical SkillsComplicationComputational algorithmComputer SimulationComputer Vision SystemsCoupledDataData SetDevicesDiagnosisDiagnosticDiameterDiseaseDistalDropsEarly DiagnosisElectromagneticsEnsureEnvironmentEquipmentFamily suidaeFreedomFrequenciesFutureHealth BenefitHourHumanIndividualLesionLocalized DiseaseLocalized LesionLocationLungMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMeasurementMedicalMedicineMentorsMinorModelingMorbidity - disease rateMotionNeedlesNeoplasm MetastasisNeural Network SimulationNoduleNorth CarolinaOperative Surgical ProceduresPatient observationPatientsPhysiciansPositioning AttributePreparationProceduresPsyche structurePublic HealthPuncture procedureRadialReproducibilityResearchRobotRoboticsScientistSecondary toSiteSurvival RateSystemTechniquesTechnologyTimeTissuesTracheaTrainingUnited StatesUniversitiesWomanWorkX-Ray Computed Tomographycancer diagnosiscareerchest computed tomographycomputer sciencedata-driven modeldeep neural networkexperienceexperimental studyfollow-upimprovedin vivolaboratory experimentlarge datasetslung cancer screeninglung lesionmachine learning modelmenmillimeterminimally invasivemortalityreal time modelscreening guidelinessimulationskillssoftware developmentsuccesstoolultrasoundvirtualvirtual human
项目摘要
Project Summary/Abstract
Lung cancer 5-year survival rates drop from 61% for early stage diagnosis to just 6% for late stage diagnosis.
Currently, fewer than 1 in 5 cases are diagnosed at an early stage. The increasing frequency of chest CT scans
and changes in lung cancer screening guidelines are expected to increase the number of incidentally discovered
lung lesions, representing an opportunity for earlier lung cancer diagnosis. Bronchoscopy is currently the safest,
least invasive, and least expensive diagnostic option, but its poor diagnostic yield greatly limits its procedural
benefit. Even when advanced techniques like radial endobronchial ultrasound and electromagnetic navigation
are used, the diagnostic yield is just 50-60%. This is primarily due to challenges with intraoperative localization
of the bronchoscope prior to needle deployment. Additionally, access to these techniques is limited because they
require expensive equipment and unique expertise. Efforts relying on the bronchoscope's built-in camera require
no additional equipment or specialization, but have struggled with generalizability across individuals in part due
to limited data availability and assumptions about airway features.
The objective of this proposal is to improve the success rate of traditional bronchoscopes by addressing limita-
tions in intraoperative localization using a data-driven model that is robust to differences in human anatomy. This
work has potential for significant public health benefit by (1) increasing early lung cancer detection, (2) reducing
morbidity and mortality by reducing the number of invasive procedures, and (3) making minimally invasive bron-
choscopy more accessible in areas without expert bronchoscopists. The proposed work will be accomplished via
two Specific Aims. In Aim 1, a dataset will be generated of virtual and real bronchoscopy videos with video-frame
matched six degrees-of-freedom poses (position and orientation in three-dimensions) of the bronchoscope's dis-
tal tip. This data will be made publicly available as the first large dataset of its kind to promote future research and
reproducibility. In Aim 2, a real-time bronchoscope localization model will be developed using advances in ma-
chine learning, including deep neural networks, that have shown success in camera localization for non-medical
applications. These models will regress the pose of the bronchoscope's distal tip using current and past video
frames of the bronchoscope's built-in camera. The clinical utility of the system will be evaluated in simulation, 3D
printed lung phantoms, and ex-vivo porcine lung experiments. The research, tightly coupled clinical experience,
and associated training plan will provide a unique interdisciplinary skill-set in computer science, medical robotics,
and procedural medicine. The outstanding research and clinical environment for this training at the University of
North Carolina at Chapel Hill ensures exceptional preparation for a career conducting cutting-edge research as
a physician-scientist in medical robotics.
项目摘要/摘要
肺癌5年生存率从早期诊断的61%下降到后期诊断的6%。
目前,在早期诊断出5例中不到1例。胸部CT扫描的频率增加
预计肺癌筛查指南的变化将增加偶然发现的数量
肺部病变,代表了早期肺癌诊断的机会。支气管镜检查目前是最安全的,
至少侵入性且最不昂贵的诊断选择,但其诊断不佳会极大地限制了其程序性
好处。即使径向支气管超声和电磁导航等高级技术
使用,诊断产量仅为50-60%。这主要是由于术中定位的挑战
针头部署之前的支气管镜。此外,访问这些技术是有限的,因为它们
需要昂贵的设备和独特的专业知识。依靠支气管镜的内置相机的努力需要
没有其他设备或专业化
有限的数据可用性和关于气道功能的假设。
该提案的目的是通过解决极限来提高传统支气管镜的成功率
使用数据驱动的模型在术中定位中的特性,该模型可与人体解剖结构的差异相差。这
工作有可能通过(1)增加肺癌检测来实现重要的公共卫生利益;(2)减少
通过减少侵入性程序的数量来发病和死亡率,(3)
Choscopy在没有专业支气管镜医生的地区更容易获得。拟议的工作将通过
两个特定目标。在AIM 1中,将通过视频框架生成虚拟和真实支气管镜镜检查视频的数据集
匹配支气管镜的六个自由度位置(三维位置和方向)
TAL提示。这些数据将作为此类数据公开提供,以促进未来的研究和
可重复性。在AIM 2中,将使用MA-的进步开发实时支气管镜定位模型
Chine学习,包括深神经网络,在非医学方面显示了相机定位的成功
申请。这些模型将使用当前和过去的视频来回归支气管镜的独特尖端的姿势
支气管镜的内置相机的框架。该系统的临床实用性将在模拟中评估3D
印刷的肺幻像和前猪肺肺实验。这项研究,紧密结合的临床经验,
相关的培训计划将在计算机科学,医学机器人技术中提供独特的跨学科技能,
和程序医学。该大学培训的杰出研究和临床环境
北卡罗来纳州教堂山(Chapel Hill
医学机器人技术的身体科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inbar Fried其他文献
Inbar Fried的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inbar Fried', 18)}}的其他基金
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10450665 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10315198 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers
改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物
- 批准号:
10685325 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10450665 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Real-Time Bronchoscope Localization Using Machine Learning To Improve Lung Cancer Diagnosis
使用机器学习实时支气管镜定位来改善肺癌诊断
- 批准号:
10315198 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
3D Printed Biomimetic Bioglass-Gradient Matrices for ACL Reconstruction
用于 ACL 重建的 3D 打印仿生生物玻璃梯度矩阵
- 批准号:
9232729 - 财政年份:2017
- 资助金额:
$ 4.59万 - 项目类别: