Dissecting the assembly of neurotransmitter release sites
剖析神经递质释放位点的组装
基本信息
- 批准号:10682464
- 负责人:
- 金额:$ 66.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-13 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAffectAffinityBindingBinding ProteinsBrainBrain DiseasesCell LineCell membraneCellsCollectionCommunicationComplexDockingElectron MicroscopyElectrophysiology (science)Fluorescence Recovery After PhotobleachingFreezingGene FamilyGenesGoalsHippocampusImageIndividualKnock-outLightLinkLiquid substanceMediatingMembraneMethodologyMicroscopyModelingMolecularMutant Strains MiceNerveNeuronsNeurotransmittersPhasePhosphatidylinositol 4,5-DiphosphatePhysical condensationProcessPropertyProtein DynamicsProteinsRoleScaffolding ProteinSiteSliceStructureSurfaceSynapsesSynaptic ReceptorsSynaptic VesiclesTertiary Protein StructureTestingTransfectionVesicleWorkZinc Fingersexperimental studyflexibilityinsightknockout genemouse geneticsmutantneurotransmitter releasenovel strategiesoperationpostsynapticpredictive modelingpressurepresynapticpresynaptic neuronsprotein complexreconstitutionrecruitresiliencescaffoldstoichiometry
项目摘要
Project Summary
Neurotransmitter release at synapses critically depends on the precise assembly of the secretory machine.
Within a presynaptic nerve terminal, synaptic vesicles fuse at the active zone, a protein scaffold that forms
release sites apposed to postsynaptic receptors. This protein complex contains RIM, ELKS, Munc13, RIM-BP,
Liprin-α and Bassoon/Piccolo as central components. Recent work provides ground for new models of
how these proteins assemble into functional release sites. First, the active zone is remarkably resilient and
ablation of individual genes has at most modest effects on its assembly. Instead, combined deletions of RIM,
ELKS, or RIM-BP strongly disrupt active zone assembly, establishing scaffolding redundancy. Second, current
studies have led to a working model of assembly through liquid-liquid phase separation, with robust contributions
of multivalent low-affinity interactions to assembly. Regardless of exact mechanisms, an overarching model
that arises from these and other studies is that the active zone is a dynamic protein network that is held together
by redundant, low-affinity protein binding. This is different from conventional models in which master organizers
mediate assembly through rigid complexes with well-defined stoichiometries.
Here, we build on our and other’s recent progress with the goal to identify what mechanisms mediate assembly
of the initial active zone scaffold, and how opposing surfaces of these active zone protein networks interact with
the target plasma membrane and with the synaptic vesicle cluster, respectively. We will use a three-pronged
approach to answer these questions. Aim 1 defines roles and mechanisms of RIM in active zone assembly.
We build on our finding that RIM drives recruitment of interacting proteins after removing scaffolding redundancy
through RIM+ELKS knockout. We test the model that RIM organizes active zones through a two-step process
that mechanistically separates RIM-targeting to active zones from RIM’s activity in recruiting other active zone
proteins. Aim 2 dissects how synaptic vesicle clusters and active zones, two presynaptic sub-
compartments, interact with one another. We rely on a new, “in-synapse” reconstitution approach and test
parallel models to define which binding activities are sufficient to mediate vesicle docking. Aim 3 determines
active zone anchoring mechanisms at the target plasma membrane. This aim makes use of our unique
collection of conditional and compound mutants to solve the long-standing question of how the active zone
scaffolds are physically attached to the right place at the target membrane. We use state-of-the-art methodology
including conditional gene knockout, stimulated emission depletion (STED) microscopy, fluorescence recovery
after photobleaching (FRAP), high pressure freezing- and correlative light-electron microscopy (CLEM), and
electrophysiology to answer these questions.
Our work will establish mechanistic models on how the target membrane, the active zone, and the vesicle
cluster interact with one another to support both stability and dynamics in the synaptic vesicle cycle.
项目摘要
突触处的神经递质释放在很大程度上取决于秘密机器的精确组装。
在突触前神经末端,在活性区域的突触蔬菜融合,这是形成的蛋白质支架
释放位点应用于突触后受体。该蛋白质复合物包含边缘,麋鹿,munc13,rim-bp,
liprin-α和巴松/短笛作为中心成分。最近的工作为新模型提供了基础
这些蛋白如何组装到功能释放位点中。首先,活动区非常有弹性和
单个基因的消融对其组装最多具有适度的影响。相反,将轮辋的删除结合在一起,
麋鹿或RIM-BP强烈破坏活跃的区域组件,建立脚手架的冗余。第二,当前
研究导致了通过液体液相分离的组装工作模型,并具有强大的贡献
与组装的多价低亲和力相互作用。不管确切的机制,总体模型
这些研究和其他研究产生的是,活性区是一个动态蛋白网络,共同存在
通过冗余,低亲和力的蛋白结合。这与总体组织者的传统模型不同
通过具有明确定义的石学计量法的刚性复合物进行介导组件。
在这里,我们以我们的最新进展为基础,目的是确定媒体集会的机制
初始活跃区支架的,以及这些活性区蛋白网络的相反表面如何与
靶质膜和突触囊泡簇分别。我们将使用三管
回答这些问题的方法。 AIM 1定义了RIM在活动区组装中的作用和机制。
我们以我们的发现为基础,即删除脚手架的冗余后,轮辋驱动了相互作用的蛋白质
通过RIM+麋鹿淘汰赛。我们测试了RIM通过两步过程组织活动区域的模型
从机械上将边缘靶向与活动区域分开与RIM在招募其他活动区域的活动中
蛋白质。 AIM 2剖析合成囊泡簇和活性区域如何,两个突触前亚 -
隔间,彼此互动。我们依靠一种新的“鼻内”重建方法和测试
平行模型来定义哪些结合活动足以介导蔬菜对接。 AIM 3决定
在靶质膜上的主动区域锚定机制。这个目标利用了我们的独特
有条件和复合突变体的收集,以解决活跃区的长期问题
脚手架物理连接到目标膜的正确位置。我们使用最先进的方法
包括条件基因敲除,刺激的发射耗竭(STED)显微镜,荧光恢复
光漂白(FRAP)后,高压冻结和相关光电子显微镜(CLEM)和
电生理来回答这些问题。
我们的工作将建立有关目标膜,活性区和囊泡的机械模型
簇相互相互作用,以支持突触囊泡周期中的稳定性和动力学。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial and temporal scales of dopamine transmission.
- DOI:10.1038/s41583-021-00455-7
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Liu C;Goel P;Kaeser PS
- 通讯作者:Kaeser PS
Rebuilding essential active zone functions within a synapse.
- DOI:10.1016/j.neuron.2022.01.026
- 发表时间:2022-05-04
- 期刊:
- 影响因子:16.2
- 作者:Tan, Chao;Wang, Shan Shan H.;de Nola, Giovanni;Kaeser, Pascal S.
- 通讯作者:Kaeser, Pascal S.
PKC-phosphorylation of Liprin-α3 triggers phase separation and controls presynaptic active zone structure.
- DOI:10.1038/s41467-021-23116-w
- 发表时间:2021-05-24
- 期刊:
- 影响因子:16.6
- 作者:Emperador-Melero J;Wong MY;Wang SSH;de Nola G;Nyitrai H;Kirchhausen T;Kaeser PS
- 通讯作者:Kaeser PS
Firing Rate Homeostasis Can Occur in the Absence of Neuronal Activity-Regulated Transcription.
在缺乏神经元活动调节转录的情况下,可能会发生放电率稳态。
- DOI:10.1523/jneurosci.1108-19.2019
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Tyssowski,KelseyM;Letai,KatherineC;Rendall,SamuelD;Tan,Chao;Nizhnik,Anastasia;Kaeser,PascalS;Gray,JesseM
- 通讯作者:Gray,JesseM
Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones.
- DOI:10.7554/elife.79077
- 发表时间:2022-11-18
- 期刊:
- 影响因子:7.7
- 作者:Tan C;de Nola G;Qiao C;Imig C;Born RT;Brose N;Kaeser PS
- 通讯作者:Kaeser PS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pascal Simon Kaeser其他文献
Pascal Simon Kaeser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pascal Simon Kaeser', 18)}}的其他基金
Mechanisms for somatodendritic dopamine release in the midbrain
中脑体细胞树突多巴胺释放机制
- 批准号:
10604832 - 财政年份:2023
- 资助金额:
$ 66.66万 - 项目类别:
Architecture and function of striatal dopamine release machinery
纹状体多巴胺释放机制的结构和功能
- 批准号:
9402528 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Architecture and function of striatal dopamine release machinery
纹状体多巴胺释放机制的结构和功能
- 批准号:
9528696 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Architecture and function of striatal dopamine signaling machinery
纹状体多巴胺信号机制的结构和功能
- 批准号:
10464718 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Dissecting the assembly of neurotransmitter release sites
剖析神经递质释放位点的组装
- 批准号:
10536772 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Architecture and Function of Striatal Dopamine Signaling Machinery
纹状体多巴胺信号传导机制的结构和功能
- 批准号:
10589076 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Dissecting the assembly of vertebrate neurotransmitter release sites-Research Supplements to Promote Diversity in Health-Related Research
剖析脊椎动物神经递质释放位点的组装——促进健康相关研究多样性的研究补充
- 批准号:
9896449 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Architecture and function of striatal dopamine release machinery
纹状体多巴胺释放机制的结构和功能
- 批准号:
9915988 - 财政年份:2017
- 资助金额:
$ 66.66万 - 项目类别:
Molecular Dissection of Active Zone Functions in Neurotransmitter Release
神经递质释放中活性区功能的分子剖析
- 批准号:
9275552 - 财政年份:2014
- 资助金额:
$ 66.66万 - 项目类别:
Molecular Dissection of Active Zone Functions in Neurotransmitter Release
神经递质释放中活性区功能的分子剖析
- 批准号:
10613501 - 财政年份:2014
- 资助金额:
$ 66.66万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 66.66万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 66.66万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 66.66万 - 项目类别:
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 66.66万 - 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 66.66万 - 项目类别: