Smartphone-based optical scanner to physiologically assess diabetic foot ulcers
基于智能手机的光学扫描仪可对糖尿病足溃疡进行生理评估
基本信息
- 批准号:10680499
- 负责人:
- 金额:$ 51.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAfrican American populationAmputationAssessment toolBeerCaringCaucasiansCellular PhoneCharacteristicsChronicChronic CareClinicalClinical assessmentsClinics and HospitalsCollaborationsCommunitiesComplementComplications of Diabetes MellitusDevelopmentDevicesDiabetes MellitusDiabetic Foot UlcerDiscipline of NursingEthnic OriginEthnic PopulationExcisionFloridaFunctional ImagingHispanic AmericansHospitalizationImageImage AnalysisImaging technologyIncidenceInternationalLawsLesionLightLimb structureMapsMeasurementModelingNative AmericansNear-infrared optical imagingNoiseOpticsOutcomeOxygenPatientsPersonsPhysiologicalPigmentation physiologic functionPositioning AttributeRaceResearchResearch DesignRiskSMART healthSigns and SymptomsSiteSkinSurfaceSurgeonTechnologyTissuesTriageValidationVariantVisualclinical carecomputer scienceflufootglobal healthhealinghealth care deliveryhigh riskimaging approachin vivoinnovationmHealthmachine learning algorithmmultidisciplinarymutantnovelpandemic diseasepoint of carepreservationracial populationskin colorskin woundstatisticstissue mappingtissue oxygenationtissue phantomtoolvalidation studieswoundwound carewound treatment
项目摘要
PROJECT SUMMARY
One in three people with diabetes mellitus is at risk of diabetic foot ulcers (DFUs), with over 10% amputated.
The current global pandemic has driven a significant change in healthcare delivery and disrupted DFU care and
limb preservation, leaving many patients with limited or no clinical care.
Clinicians must adopt a paradigm shift
from the hospital and clinic care to community-based point-of-care (POC) - to best triage chronic DFU cases that
are high-risk lesions requiring clinical care or hospitalization. There is an unmet clinical need for smart health
assessment tools for POC treatment of patients with DFUs onsite, where no wound care expertise is available.
Smartphone technologies for wound care are limited to 2D/3D wound image analysis for size/depth. They are
insufficient as stand-alone tools to assess and triage high-risk DFU lesions without wound expertise onsite.
Hence, additional clinical assessments (e.g., the extent of oxygen supply to wound) are required during POC of
DFUs onsite.
Oxygenation measurements provide a sub-clinical physiological assessment that complements
clinical visual assessment. We recently developed a smartphone-based NIR imaging approach or SmartPhone
Oxygenation Tool (SPOT) to obtain visual tissue oxygenation measurements in wounds. Systematic
assessment of the skin tone and wound characteristics is critical during physiological imaging and has not been
investigated to date. Hence, our objective is to develop and validate a smartphone-based imaging approach
(or Smart Scanner) capable of visual and physiological analysis of DFUs across the spectrum of skin tones and
wound features via automated machine learning (ML) algorithms. Developing a smartphone-based optical device
via integration of existing NIR imaging technology, but towards smart health platform for physiological
assessment of DFUs, while accounting for varying skin colors and wound types using ML algorithms is
innovative. The specific aims are: (i) Account for the effect of skin tones on oxygenation measurements by
applying light propagation models and machine learning algorithms and validate via phantom and in-vivo studies.
(ii) Analyze tissue curvatures and account for depth variations in-vivo oxygenation maps via studies on control
subjects (~15 cases). (iii) Differentiate wound tissue types and validate physiological imaging using the SPOT
device via DFU studies (~25 cases). The expected outcomes are: (i) Develop our Smart Scanner (SPOT
device + app) to obtain accurate tissue oxygenation maps across different skin tones and wound tissue types;
(ii) Validate our SPOT device to differentiate DFUs with high-risk lesions that require clinical care, from low-risk
cases. Incidence of DFUs and related amputation rates differ by race/ethnicity, and are higher in African
Americans, Hispanic and Native Americans compared to Caucasians. In the long term, SPOT can be used as
a smart health tool to pre-screen or triage DFUs with high-risk lesions to clinical care and thus minimize potential
amputations in any racial/ethnic group (with varying skin tones).
项目概要
三分之一的糖尿病患者有患糖尿病足溃疡 (DFU) 的风险,其中超过 10% 的人需要截肢。
当前的全球大流行推动了医疗保健服务的重大变化,并扰乱了糖尿病足溃疡 (DFU) 护理和治疗
肢体保留,使许多患者得到有限的临床护理或根本没有临床护理。
临床医生必须转变范式
从医院和诊所护理到社区护理点 (POC) - 对慢性 DFU 病例进行最佳分类
是需要临床护理或住院治疗的高危病变。智能健康的临床需求尚未得到满足
在没有伤口护理专业知识的情况下,用于对 DFU 患者进行 POC 现场治疗的评估工具。
用于伤口护理的智能手机技术仅限于对伤口大小/深度进行 2D/3D 图像分析。他们是
如果没有现场伤口专业知识,作为独立工具不足以评估和分类高风险 DFU 病变。
因此,在 POC 期间需要进行额外的临床评估(例如,伤口的供氧程度)
DFU 现场。
氧合测量提供亚临床生理评估,补充
临床视觉评估。我们最近开发了一种基于智能手机的近红外成像方法或智能手机
氧合工具 (SPOT) 用于获得伤口组织氧合的可视化测量结果。系统化
肤色和伤口特征的评估在生理成像过程中至关重要,但尚未得到证实
调查至今。因此,我们的目标是开发和验证基于智能手机的成像方法
(或智能扫描仪)能够对整个肤色范围内的 DFU 进行视觉和生理分析
通过自动机器学习 (ML) 算法实现伤口特征。开发基于智能手机的光学设备
通过整合现有的近红外成像技术,迈向生理智能健康平台
评估 DFU,同时使用 ML 算法考虑不同的肤色和伤口类型
创新的。具体目标是: (i) 通过以下方式解释肤色对氧合测量的影响:
应用光传播模型和机器学习算法,并通过模型和体内研究进行验证。
(ii) 通过控制研究分析组织曲率并解释体内氧合图的深度变化
受试者(~15 例)。 (iii) 使用 SPOT 区分伤口组织类型并验证生理成像
通过 DFU 研究的设备(约 25 例)。预期成果是: (i) 开发我们的智能扫描仪(SPOT
设备+应用程序)以获得不同肤色和伤口组织类型的准确组织氧合图;
(ii) 验证我们的 SPOT 设备,以区分需要临床护理的高风险病变 DFU 和低风险病变
案例。 DFU 的发生率和相关截肢率因种族/民族而异,非洲地区较高
美国人、西班牙裔和美洲原住民与白种人的比较。从长远来看,SPOT 可以用作
一种智能健康工具,用于对具有高风险病变的 DFU 进行预筛查或分类以进行临床护理,从而最大限度地减少潜在风险
任何种族/族裔群体(不同肤色)的截肢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANURADHA GODAVARTY其他文献
ANURADHA GODAVARTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANURADHA GODAVARTY', 18)}}的其他基金
Smartphone-based optical scanner to physiologically assess diabetic foot ulcers
基于智能手机的光学扫描仪可对糖尿病足溃疡进行生理评估
- 批准号:
10503651 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Hand-held optical probe for fluorescence imaging of breast cancer
用于乳腺癌荧光成像的手持式光学探头
- 批准号:
7913473 - 财政年份:2009
- 资助金额:
$ 51.77万 - 项目类别:
Hand-held optical probe for fluorescence imaging of breast cancer
用于乳腺癌荧光成像的手持式光学探头
- 批准号:
7844503 - 财政年份:2009
- 资助金额:
$ 51.77万 - 项目类别:
Hand-held optical imager for breast cancer imaging
用于乳腺癌成像的手持式光学成像仪
- 批准号:
8545922 - 财政年份:2007
- 资助金额:
$ 51.77万 - 项目类别:
Hand-held optical probe for fluorescence imaging of breast cancer
用于乳腺癌荧光成像的手持式光学探头
- 批准号:
7127016 - 财政年份:2007
- 资助金额:
$ 51.77万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Smartphone-based optical scanner to physiologically assess diabetic foot ulcers
基于智能手机的光学扫描仪可对糖尿病足溃疡进行生理评估
- 批准号:
10503651 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10375219 - 财政年份:2019
- 资助金额:
$ 51.77万 - 项目类别: