Individualized Closed-Loop Neuromodulation Therapy for Alzheimer's Disease
阿尔茨海默病的个体化闭环神经调节疗法
基本信息
- 批准号:10680555
- 负责人:
- 金额:$ 20.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease therapyAmericanAmyloidAmyloid ProteinsAtrophicBehaviorBiological MarkersBiological PhenomenaBrainCephalicClinicalClinical TrialsCognitionCognitiveCrossover DesignDataDevelopmentDevicesDiagnostic ProcedureDiseaseDisease modelElectric StimulationElectroencephalographyFunctional disorderFutureHomeHumanImmunotherapyInterventionInvestmentsLearningLightMagnetic Resonance ImagingMapsMeasuresMembrane PotentialsMemoryMicrogliaModelingMolecularNatureNerve DegenerationNeurodegenerative DisordersNeuronsNeurosciencesPathologicPatientsPerceptionPharmacologyPhasePhysiologic pulsePhysiologicalPhysiologyPositron-Emission TomographyPrecision therapeuticsProcessProteinsPublic HealthReadingResourcesRestRodentRodent ModelRoleSafetySenile PlaquesSensoryTechniquesTechnologyTherapeuticTherapeutic InterventionThickTranslatingWorkbiomarker discoveryblindbrain abnormalitiescognitive performancecost effectivefunctional outcomesimprovedin vivomanufacturemild cognitive impairmentneuralneurophysiologyneuropsychiatryneuroregulationnovelportabilityrecruitsoundsymptom treatmentsymptomatic improvementtau Proteinstherapy developmenttooltreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Alzheimer’s Disease (AD) is a neurodegenerative disease that affects over 5 million Americans.
Despite its clinical and public health impact, and the resources invested in treatment development, existing
therapies remain only symptomatic (not disease modifying) and have modest efficacy. Disease models have
traditionally emphasized molecular (maladaptive changes in -amyloid and tau proteins) and cellular
(neurodegeneration) processes. Therefore, treatment development has focused on interventions that engage
these molecular and cellular mechanisms, i.e. pharmacology and immunotherapy. Recent developments in
pathophysiology, biomarker discovery and treatment development have emphasized a physiological approach
to AD, with a focus on gamma oscillations as treatment targets. Critically, evidence in rodents suggests that
engaging these aberrant physiological signatures with 40 Hz light and sound stimulation not only restores
gamma oscillations and improves memory, but it also activates microglia leading to a reduction in amyloid and
tau. Hence, this treatment strategy has the potential to be a disease-modifying therapy, which we are lacking in
AD.
While engaging gamma oscillations with 40Hz light and sound is a viable strategy, using electrical
stimulation to modulate an electrical biological phenomenon should have greater impact. Noninvasive device
neuromodulation technologies have been used as neuroscience tools to probe and study brain physiology in
humans in vivo for decades, and as diagnostic procedures (e.g. TMS for clinical neurophysiology and
presurgical mapping) and therapeutic interventions for neuropsychiatric conditions. tACS is very safe, well
tolerared, cheap to manufacture and portable, making it a potentially home-based therapy. The capacity of
tACS to engage oscillations in the human brain leading to changes in cognition, behavior and perception is
established. That said, given the weak intensity of the electrical currents (e.g. 2mA), tACS may not always
effectively engage or reduce ongoing oscillation in the brain. A more sophisticated and individualized “smart
tACS” approach that uses closed-loop technology by reading the ongoing EEG activity of the patient and
applying the stimulation in phase with the ongoing patient-specific brain activity is now technically possible, and
showing to have greater impact on brain oscillations. We hypothesize that closed-loop tACS at 40 Hz in
patients with AD should be a more effective strategy to engage these abnormal rhythms, and if the results in
rodents translate to humans as early evidence suggests, it may become a much needed disease-modifying
intervention (or at least a safe and cost-effective symptomatic treatment).
项目概要/摘要
阿尔茨海默病 (AD) 是一种影响超过 500 万美国人的神经退行性疾病。
尽管其对临床和公共卫生产生影响,并且在治疗开发上投入了资源,但现有的
治疗方法仍然只是对症治疗(而不是改变疾病),而且疾病模型的疗效有限。
传统上强调分子(-淀粉样蛋白和 tau 蛋白的适应不良变化)和细胞
因此,治疗开发的重点是参与的干预措施。
这些分子和细胞机制,即药理学和免疫疗法的最新进展。
病理生理学、生物标志物发现和治疗开发都强调生理学方法
至关重要的是,啮齿类动物的证据表明,以伽马振荡为治疗目标。
将这些异常的生理特征与 40 Hz 光和声音刺激结合起来,不仅可以恢复
伽玛振荡并改善记忆力,但它也会激活小胶质细胞,导致淀粉样蛋白和淀粉样蛋白的减少
因此,这种治疗策略有可能成为一种我们所缺乏的疾病缓解疗法。
广告。
虽然用 40Hz 光和声音参与伽马振荡是一种可行的策略,但使用电
刺激来调节电生物现象应该会产生更大的影响。
神经调节技术已被用作神经科学工具来探索和研究大脑生理学
人类体内已有数十年的历史,并作为诊断程序(例如用于临床神经生理学的 TMS 和
术前定位)和神经精神疾病的治疗干预非常安全。
耐受性好、制造成本低且便于携带,使其成为一种潜在的家庭疗法。
tACS 参与人脑振荡,导致认知、行为和感知发生变化
也就是说,鉴于电流强度较弱(例如 2mA),tACS 可能并不总是有效。
有效地参与或减少大脑中持续的振荡。更复杂和个性化的“智能”。
tACS”方法使用闭环技术,通过读取患者正在进行的脑电图活动和
现在在技术上可以与正在进行的患者特定大脑活动同步施加刺激,并且
结果显示对大脑振荡有更大的影响,我们在 40 Hz 下追求闭环 tACS。
AD 患者应该采取更有效的策略来参与这些异常节律,如果结果
正如早期证据表明的那样,啮齿动物可以转化为人类,它可能成为一种急需的疾病缓解方法
干预(或至少是安全且具有成本效益的对症治疗)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joan A Camprodon其他文献
Joan A Camprodon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joan A Camprodon', 18)}}的其他基金
State-dependent modulation of interactions of theta and gamma rhythms in working memory
工作记忆中θ节律和伽马节律相互作用的状态依赖性调节
- 批准号:
10740352 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Suicide Circuit Therapeutics: Engaging Novel Targets with Rapid and Individualized MRI-Guided Accelerated TMS
自杀回路治疗:通过快速、个性化的 MRI 引导加速 TMS 参与新靶点
- 批准号:
10646517 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Individualized Closed-Loop Neuromodulation Therapy for Alzheimer's Disease
阿尔茨海默病的个体化闭环神经调节疗法
- 批准号:
10510106 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
A Transdiagnostic Assessment of Electroconvulsive Therapy Modulation of Anhedonia and Reward circuitry: Targets, Biomarkers and Predictors of Response
电惊厥治疗快感缺失和奖励回路调节的跨诊断评估:目标、生物标志物和反应预测因子
- 批准号:
10171912 - 财政年份:2017
- 资助金额:
$ 20.64万 - 项目类别:
Personalized target selection for TMS therapy using functional vs. structural connectivity MRI
使用功能性与结构性连接 MRI 进行 TMS 治疗的个性化靶点选择
- 批准号:
9433834 - 财政年份:2017
- 资助金额:
$ 20.64万 - 项目类别:
A Transdiagnostic Assessment of Electroconvulsive Therapy Modulation of Anhedonia and Reward circuitry: Targets, Biomarkers and Predictors of Response
电惊厥治疗快感缺失和奖励回路调节的跨诊断评估:目标、生物标志物和反应预测因子
- 批准号:
9398707 - 财政年份:2017
- 资助金额:
$ 20.64万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Individualized Closed-Loop Neuromodulation Therapy for Alzheimer's Disease
阿尔茨海默病的个体化闭环神经调节疗法
- 批准号:
10510106 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Predicting Drug Cardiotoxicity Targets Using iPSC-Derived Cardiomyocytes and Machine Learning
使用 iPSC 衍生的心肌细胞和机器学习预测药物心脏毒性目标
- 批准号:
10433823 - 财政年份:2020
- 资助金额:
$ 20.64万 - 项目类别: