Predicting Drug Cardiotoxicity Targets Using iPSC-Derived Cardiomyocytes and Machine Learning
使用 iPSC 衍生的心肌细胞和机器学习预测药物心脏毒性目标
基本信息
- 批准号:10433823
- 负责人:
- 金额:$ 3.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-21 至 2023-08-20
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAdverse effectsAffectAlgorithmsAnimalsArrhythmiaBehaviorBenchmarkingBindingCardiacCardiac MyocytesCardiotoxicityCaviaCellsClinical TrialsClosure by clampComplexComputer ModelsComputing MethodologiesDataData SetDetectionDevelopmentDiseaseDrug ApprovalDrug CostsDrug TargetingEarly DiagnosisElectrophysiology (science)EquationFailureFunctional disorderGoalsHeartHumanIn VitroIon ChannelKineticsKnowledgeLeadLearningMachine LearningManualsMeasurementMeasuresMethodsModelingMorphologyPharmaceutical PreparationsPopulationProcessProtocols documentationPublishingRecoveryResearchRiskRisk AssessmentSensitivity and SpecificityStandard ModelTestingTissuesbaseblood pumpcostdesigndrug developmentexperimental studyheart cellhuman datahuman modelhuman stem cellshuman subjectimprovedinduced pluripotent stem cellinsightmachine learning algorithmnovelpatch clamppre-clinicalpredictive modelingscreeningsudden cardiac deathvoltagevoltage clamp
项目摘要
PROJECT SUMMARY
Drug development and approval is a costly process with nearly $2 billion spent for each drug that is approved.
One of the most significant contributors to this high cost is the expense of developing drugs that fail to pass
clinical trials – only 15% of drugs that begin clinical trials are approved for use on humans. A common reason
for not reaching the FDA’s criteria for approval is that the drug is classified as cardiotoxic, which cannot be
detected during early stages of drug development. One way that drugs can lead to cardiotoxicity is by altering
the electrical activity of ion channels that are responsible for the excitation of the heart tissue that pumps blood
to the body. Understanding which ion channels, and the extent to which these ion channels are affected is
central to determining the cardiotoxicity of a drug. Early-stage predictions of cardiotoxicity are based on animal
studies that are poor models of human heart behavior or single-cell electrophysiological studies that falsely
assume underlying pathophysiology based on action potential changes. The recent development of human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offers an opportunity to study drug effects
on human cells in a preclinical setting. In this study, we hypothesize that fitting a computational iPSC-CM
model to voltage-clamp (VC) data acquired before and after drug application provides a means of quantifying
unknown drug effects on specific cardiac ion channels. We will address this hypothesis through the following
Specific Aims: 1) Use machine learning to design a novel VC protocol that improves the quality of data for
hiPSC-CM model fitting. 2) Quantify the change in hiPSC-CM ion channel conductances before and after drug
application. We will use machine learning to develop a novel voltage clamp protocol that improves the
electrophysiology data acquired from our hiPSC-CMs. The data is optimized to improve predictions of the
conductances for all ion channels activated during the cardiac action potential. We can apply this voltage
clamp protocol in an in vitro setting before and after drug application, then fit our computational model to each
dataset. The change in ion channel conductances, predicted by the model fit, serves as an estimate of the
channel-specific effects of the drug. The contributions of this proposal will be significant because it will be the
first study to use human cardiac cells to produce quantitative measurements of channel-specific drug targets
that may lead to lethal cardiac arrhythmias.
项目摘要
药物开发和批准是一个昂贵的过程,每种批准的药物花费了近20亿美元。
高成本的最重要的贡献者之一是开发无法通过的药物的费用
临床试验 - 批准开始临床试验的药物中只有15%用于人类。一个常见的原因
由于未达到FDA的批准标准是该药物被归类为心脏毒性,这是不可能的
在药物开发的早期阶段检测到。药物可以导致心脏毒性的一种方法是改变
离子通道的电活动,导致泵血的心脏组织兴奋
到身体。了解哪些离子通道以及这些离子通道受到影响的程度是
确定药物的心脏毒性的中心。心脏毒性的早期预测是基于动物的
研究是人类心脏行为或单细胞电生理研究的贫困模型的研究
基于动作电位变化,假设潜在的病理生理学。人类的最新发展
诱导多能干细胞衍生的心肌细胞(HIPSC-CMS)提供了研究药物作用的机会
在临床前的人类细胞上。在这项研究中,我们假设适合计算IPSC-CM
在申请药物之前和之后获取的电压钳(VC)数据的模型提供了一种量化的方法
未知药物对特定心脏离子通道的影响。我们将通过以下来解决这一假设
具体目的:1)使用机器学习设计新颖的VC协议,以提高数据质量
HIPSC-CM模型拟合。 2)量化药物之前和之后的HIPSC-CM离子通道电导的变化
应用。我们将使用机器学习来开发一种新颖的电压夹协议,以改善
从我们的HIPSC-CMS获得的电生理数据。优化数据以改善对
在心脏作用电位期间激活的所有离子通道的电导。我们可以应用此电压
在药物施用之前和之后,在体外环境中的夹紧协议,然后将我们的计算模型适合每个
数据集。模型拟合预测的离子通道电导的变化是对
该药物的渠道特异性作用。该提案的贡献将是重要的,因为它将是
首先使用人类心脏细胞生成通道特异性药物靶标的定量测量的研究
这可能导致致命的心律不齐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander P Clark其他文献
Alexander P Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander P Clark', 18)}}的其他基金
Predicting Drug Cardiotoxicity Targets Using iPSC-Derived Cardiomyocytes and Machine Learning
使用 iPSC 衍生的心肌细胞和机器学习预测药物心脏毒性目标
- 批准号:
10470389 - 财政年份:2020
- 资助金额:
$ 3.96万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered Matrices with Electrical and Chemical Stimulation for Peripheral Nerve Repair
用于周围神经修复的具有电和化学刺激的工程基质
- 批准号:
10592729 - 财政年份:2022
- 资助金额:
$ 3.96万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10392121 - 财政年份:2022
- 资助金额:
$ 3.96万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10611385 - 财政年份:2022
- 资助金额:
$ 3.96万 - 项目类别:
Regulation of neuronal activity in the paraventricular thalamus by chronic morphine
慢性吗啡对室旁丘脑神经元活动的调节
- 批准号:
10313987 - 财政年份:2021
- 资助金额:
$ 3.96万 - 项目类别: