Personalized Postpartum Hemorrhage Prediction Using Machine Learning And Polygenic Risk Scores
使用机器学习和多基因风险评分进行个性化产后出血预测
基本信息
- 批准号:10670427
- 负责人:
- 金额:$ 16.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAlgorithmsArchitectureBody mass indexCessation of lifeClinicalComplexComplicationDataDatabasesDecision MakingDecision TreesElectronic Health RecordGeneticGenetic RiskGenotypeGestational DiabetesGoalsHemorrhageHospitalsHourHypertensionIndividualInvestigationLaboratoriesLinkLogistic RegressionsMachine LearningMaternal HealthMaternal MortalityMentorsMethodsModelingNatureObesityOutcomePatientsPerformancePharmaceutical PreparationsPhysiciansPostpartum HemorrhagePredictive ValuePregnancyPregnancy OutcomePremature BirthProcessProlonged laborPublishingResearchResourcesRiskRisk FactorsScientistSpecific qualifier valueUnited StatesUnited States National Institutes of HealthWomanbilling databiobankblack womenclinical practiceclinical predictorsclinical riskcollaborative environmentcomputerized toolsdemographicsepidemiology studyevidence basegenetic risk factorgenome wide association studygenomic locushigh riskimprovedinnovationmachine learning methodmachine learning modelmaternal morbiditymaternal outcomematernal safetymedical schoolsmulti-ethnicneural networknovelobstetric outcomespatient stratificationpersonalized predictionspolygenic risk scoreprediction algorithmpredictive modelingpredictive toolspregnantpreventracial biasracial disparityrisk predictionrisk prediction modelrisk stratificationsevere maternal morbidityskillsstandard of caretooltraittranslational research program
项目摘要
ABSTRACT
Postpartum hemorrhage, defined as estimated blood loss of at least 1000 mL within 24 hours of delivery, is the
leading cause for severe maternal morbidity and mortality. Annually, postpartum hemorrhage complicates 2-3%
of all pregnancies and accounts for 140,000 maternal deaths globally. In the United States, there are also
significant racial disparities: Black women have a five-fold higher risk of hemorrhage-related death compared to
non-Black women. While clinical postpartum hemorrhage risk prediction tools have been developed, they fail to
identify up to 40% of cases; as a result, no evidence-based prediction tool is currently widely adopted in clinical
practice. Thus, an efficient, precise, and personalized postpartum hemorrhage risk prediction tool is urgently
needed. Recently, machine learning approaches have been increasingly used to develop accurate predictive
models with superior performance compared to the traditional statistical approaches and to discover new
predictors, with little prior pre-specification. Moreover, the explainable machine learning methods allow for
transparent decision making and reduction of bias. In this way, machine learning models may lead to more
accurate postpartum hemorrhage prediction than currently existing tools. In addition, since up to 18% of
postpartum hemorrhage risk is familial and many of the clinical risk factors associated with postpartum
hemorrhage have a well-established polygenic architecture, using polygenic risk tools may further enhance
postpartum hemorrhage risk prediction. In line with the NIH IMPROVE initiative goals to improve maternal safety
and outcomes, we propose here to develop a high-fidelity algorithm, combining both clinical and genetic factors,
to more accurately predict the risk of postpartum hemorrhage in pregnant individuals. We will leverage our rich
patient database and state-of-the-art computational tools to: (1) develop an improved algorithm to stratify patient
postpartum hemorrhage risk with a focus on transparency and bias reduction, and (2) delineate the contribution
of the genetics to postpartum hemorrhage risk. Overall, this project will advance our ability to precisely predict
patients at risk for postpartum hemorrhage, with the investigation of novel predictors, interaction between clinical
and genetic contributors, and novel application of both machine learning and polygenic risk scores to these
outcomes. Ultimately, we aim to validate and implement these tools in clinical practice, leading to greatly
enhanced ability to prevent maternal morbidity and mortality. By completion of these aims, I will develop a
specific skill set essential for establishing my research trajectory and transition to independence as a physician-
scientist utilizing translational computational approaches to predict and improve adverse obstetric outcomes.
抽象的
产后出血定义为产后 24 小时内估计失血至少 1000 mL,
严重孕产妇发病和死亡的主要原因。每年,产后出血会导致 2-3% 的并发症发生
占所有妊娠的总和,并导致全球 140,000 名孕产妇死亡。在美国,也有
显着的种族差异:黑人女性因出血而死亡的风险是黑人女性的五倍
非黑人女性。虽然临床产后出血风险预测工具已经开发出来,但它们未能
识别高达 40% 的病例;因此,目前临床上还没有广泛采用基于证据的预测工具。
实践。因此,迫切需要一种高效、精准、个性化的产后出血风险预测工具。
需要。最近,机器学习方法越来越多地用于开发准确的预测
与传统统计方法相比具有卓越性能的模型并发现新的
预测变量,几乎没有预先指定。此外,可解释的机器学习方法允许
透明的决策和减少偏见。通过这种方式,机器学习模型可能会带来更多
比现有工具更准确的产后出血预测。此外,由于高达 18%
产后出血风险具有家族性,许多临床危险因素与产后出血有关
出血具有完善的多基因架构,使用多基因风险工具可以进一步增强
产后出血风险预测。符合 NIH IMPROVE 倡议的目标,以提高孕产妇安全
和结果,我们在此建议开发一种结合临床和遗传因素的高保真算法,
更准确地预测孕妇产后出血的风险。我们将利用我们的丰富
患者数据库和最先进的计算工具:(1) 开发改进的算法对患者进行分层
产后出血风险,重点是透明度和减少偏见,以及 (2) 描述贡献
产后出血风险的遗传因素。总的来说,这个项目将提高我们精确预测的能力
有产后出血风险的患者,通过研究新的预测因素、临床之间的相互作用
和遗传贡献者,以及机器学习和多基因风险评分在这些方面的新颖应用
结果。最终,我们的目标是在临床实践中验证和实施这些工具,从而大大提高
提高预防孕产妇发病和死亡的能力。通过完成这些目标,我将制定一个
对于建立我的研究轨迹和过渡为独立医生至关重要的特定技能-
科学家利用转化计算方法来预测和改善不良产科结果。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Methodology for a Scalable, Collaborative, and Resource-Efficient Platform, MERLIN, to Facilitate Healthcare AI Research.
- DOI:10.1109/jbhi.2023.3259395
- 发表时间:2023-06
- 期刊:
- 影响因子:7.7
- 作者:
- 通讯作者:
On the Horizon: Specific Applications of Automation and Artificial Intelligence in Anesthesiology.
即将到来:自动化和人工智能在麻醉学中的具体应用。
- DOI:10.1007/s40140-023-00558-0
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Davoud,SherwinC;Kovacheva,VeselaP
- 通讯作者:Kovacheva,VeselaP
Development and implementation of databases to track patient and safety outcomes.
- DOI:10.1097/aco.0000000000001201
- 发表时间:2022-12-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vesela Kovacheva其他文献
Vesela Kovacheva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vesela Kovacheva', 18)}}的其他基金
Personalized Postpartum Hemorrhage Prediction Using Machine Learning And Polygenic Risk Scores
使用机器学习和多基因风险评分进行个性化产后出血预测
- 批准号:
10524826 - 财政年份:2022
- 资助金额:
$ 16.85万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Value of Sleep Metrics in Predicting Opioid-Use Disorder Treatment Outcomes: Leadership and Data Coordinating Center
睡眠指标在预测阿片类药物使用障碍治疗结果中的价值:领导力和数据协调中心
- 批准号:
10783610 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别: