Value of Sleep Metrics in Predicting Opioid-Use Disorder Treatment Outcomes: Leadership and Data Coordinating Center
睡眠指标在预测阿片类药物使用障碍治疗结果中的价值:领导力和数据协调中心
基本信息
- 批准号:10783610
- 负责人:
- 金额:$ 64.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAdoptedAdverse eventAffectAlcohol consumptionAlgorithmsArchitectureAreaBiological MarkersBiometryCaringCase Report FormCertificationCessation of lifeCircadian RhythmsClinicalClinical ResearchCollaborationsCollectionCommon Data ElementCommunicationCommunitiesDataData AnalysesData CollectionData Coordinating CenterData FilesData Management ResourcesData ScienceData SetDetectionDevelopmentDocumentationDropsElectroencephalographyElectronicsEligibility DeterminationEnrollmentEnsureEpidemiologistEpidemiologyFamilyFutureGenerationsGoalsHealthcareHelping to End Addiction Long-termHospitalsIndividualInstitutional Review BoardsInterventionLaboratoriesLeadLeadershipManualsManuscriptsMeasuresMedicineMental HealthMental disordersMetadataMissionMonitorMulticenter StudiesOnline SystemsOpiate AddictionOpioidOutcomePainPain intensityPain interferencePathway interactionsPatient RecruitmentsPatternPeriodicalsPersonal SatisfactionPersonsPhasePhenotypePhysical FunctionPhysical activityPolysomnographyPrediction of Response to TherapyPredictive ValuePreparationProceduresProtocols documentationPublic HealthQuality ControlQuestionnairesReadingRecoveryReport (document)ReportingResearchResearch TrainingResolutionResourcesRisk FactorsSafetyScientistSecureServicesSignal TransductionSiteSleepSleep Apnea SyndromesSleep ArchitectureSleep disturbancesSpecialistStandardizationStatistical Data InterpretationStressSummary ReportsSupport SystemSystemTestingTimeTrainingTreatment EffectivenessTreatment outcomeUnited States National Institutes of HealthValidationWithdrawal SymptomWomanWorkWritingaddictioncircadiancravingdata ecosystemdata integrationdata managementdata qualitydata sharingdata standardsdesigndistributed dataemotion dysregulationexperiencefitbitillicit drug useimprovedinnovationlimb movementmachine learning algorithmmedication for opioid use disordermembermultidisciplinaryneurophysiologynon rapid eye movementopioid misuseopioid use disorderparticipant enrollmentparticipant retentionphysical conditioningpredictive modelingprimary endpointprogramsquality assurancerecruitretention ratesecondary outcomeskillssleep healthsleep qualitystandard measurestatistical and machine learningsystematic reviewtreatment adherencetreatment responseweb siteweb-accessible
项目摘要
Opioid-use disorder (OUD) is a major public health problem, affecting over 2.7 million people and resulting in
over 90,000 deaths in 2020 in the U.S., as well as broadly impacting the mental and physical health of
individuals suffering from an OUD and the communities and families of affected individuals. Treatment
effectiveness for OUD depends on retention in care. Unfortunately, a systematic review reported that the
median retention rate at 6 months for Medications for Opioid Use Disorder (MOUD) programs across 19
studies was only 58%. Sleep disturbances have been identified as predictors of treatment attrition and are
related to OUD through bi-directional pathways involving pain, stress, and emotional dysregulation, and could
serve as future intervention targets to improve OUD outcomes. However, there is a limited understanding of
the predictive value of specific measures of sleep and circadian rhythm during early recovery, and almost no
data on how sleep and circadian parameters interact with other risk factors for MOUD outcomes. We have
assembled a team of sleep scientists, addiction medicine specialists, biostatisticians, and clinical trialists and
will leverage the exceptional resources of Brigham and Women's Hospital's Program in Sleep Medicine
Epidemiology, Sleep Reading Center, and Division of Biostatistics at Harvard Pilgrim Health Care Institute to
lead the Leadership and Data Coordinating Center (LDCC) for this multi-site study. The LDCC will develop a
Common Protocol for the collection of standardized data for predicting MOUD outcomes across four Research
Centers and will lead, coordinate, and implement all aspects of this common protocol, providing
comprehensive, responsive, and innovative data and project management. It will facilitate recruitment and data
sharing and support the rigorous collection and analyses of comprehensive sleep measurements. In addition to
risk factors suggested by existing prediction models and HEAL initiative common data elements, sleep will be
assessed by EEG -- a biomarker of neurophysiology and psychiatric diseases -- and will be measured on two
nights approximately one month apart from 400 patients enrolled in a MOUD program. Sleep macro- and
micro-architecture will be derived using centralized sleep scoring and advanced EEG quantitative signal
analysis. Sleep-disordered breathing, periodic limb movements, sleep-wake patterns and circadian risk factors
will be measured by polysomnography, validated questionnaires and multiple day Fitbit trackers. The primary
endpoint will be treatment retention at 6 months after study enrollment. Secondary outcomes will include time
to treatment drop out, and illicit drug use and non-medical opioid use; opioid craving; withdrawal symptoms;
alcohol use; pain intensity and interference; physical functioning; sleep disturbance and quality measured at 6-
month. We will adopt an ensemble algorithm (the Super Learner) to develop the prediction model that finds the
optimal combination of a collection of statistical and machine learning algorithms. This data-science based plan
and our multi-disciplinary expertise will ensure that the goals of this study are met.
阿片类药物使用障碍 (OUD) 是一个重大的公共卫生问题,影响超过 270 万人,并导致
2020 年美国将有超过 90,000 人死亡,并对人们的身心健康产生广泛影响
遭受 OUD 影响的个人以及受影响个人的社区和家庭。治疗
OUD 的有效性取决于护理的持续时间。不幸的是,一项系统审查报告称
19 个国家阿片类药物使用障碍药物 (MOUD) 项目 6 个月的中位保留率
研究率仅为58%。睡眠障碍已被确定为治疗减员的预测因素,并且
通过涉及疼痛、压力和情绪失调的双向途径与 OUD 相关,并且可能
作为改善 OUD 结果的未来干预目标。但人们的认识还很有限
早期恢复期间睡眠和昼夜节律的具体测量的预测价值,几乎没有
关于睡眠和昼夜节律参数如何与 MOUD 结果的其他风险因素相互作用的数据。我们有
组建了一个由睡眠科学家、成瘾医学专家、生物统计学家和临床试验人员组成的团队
将利用布莱根妇女医院睡眠医学项目的卓越资源
哈佛朝圣者医疗保健研究所的流行病学、睡眠阅读中心和生物统计学部
领导领导力和数据协调中心 (LDCC) 进行这项多地点研究。 LDCC 将开发一个
用于收集标准化数据以预测四项研究的 MOUD 结果的通用协议
中心并将领导、协调和实施该共同协议的各个方面,提供
全面、响应迅速、创新的数据和项目管理。它将促进招聘和数据
共享并支持全面睡眠测量的严格收集和分析。此外
现有预测模型和 HEAL 倡议通用数据元素建议的风险因素,睡眠将
通过脑电图(神经生理学和精神疾病的生物标志物)进行评估,并将在两个方面进行测量
400 名患者参加了 MOUD 计划,相隔大约一个月的时间。睡眠宏和
微架构将使用集中式睡眠评分和先进的脑电图定量信号来衍生
分析。睡眠呼吸障碍、周期性肢体运动、睡眠-觉醒模式和昼夜节律危险因素
将通过多导睡眠图、经过验证的问卷和多日 Fitbit 智能设备进行测量。初级
终点是研究入组后 6 个月的治疗保留。次要结果将包括时间
治疗中断、非法药物使用和非医疗阿片类药物使用;对阿片类药物的渴望;戒断症状;
饮酒;疼痛强度和干扰;身体机能;睡眠障碍和质量在 6-
月。我们将采用集成算法(超级学习器)来开发预测模型,以找到
统计和机器学习算法集合的最佳组合。这个基于数据科学的计划
我们的多学科专业知识将确保实现这项研究的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaun M Purcell其他文献
ラウンドテーブル アナボリック・アンドロジェニック・ステロイド(パート2)
圆桌会议合成代谢和雄激素类固醇(第 2 部分)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Alisa Manning;Heather M Highland;J. Gasser;Xueling Sim;Taru Tukiainen;Pierre Fontanillas;Niels Grarup;Manuel A Rivas;Anubha Mahajan;Adam E Locke;Pablo Cingolani;Tune H Pers;Ana Viñuela;Andrew Brown;Ying Wu;Jason Flannick;Christian Fuchsberger;Eric R Gamazon;Kyle J Gaulton;Hae Kyung Im;Tanya M Teslovich;Thomas W Blackwell;Jette Bork;Noël P Burtt;Yuhui Chen;T. Green;Christopher Hartl;Hyun Min Kang;Ashish Kumar;Claes Ladenvall;Clement Ma;Loukas Moutsianas;Richard D Pearson;John R B Perry;N. Rayner;Neil R Robertson;Laura J Scott;Martijn van de Bunt;Johan G Eriksson;Antti Jula;Seppo Koskinen;Terho Lehtimäki;Aarno Palotie;Olli T Raitakari;Suzanne BR Jacobs;J. Wessel;Audrey Y Chu;Robert A. Scott;Mark O Goodarzi;Christine Blancher;Gemma Buck;David Buck;Peter S Chines;Stacey Gabriel;Anette P Gjesing;Christopher J Groves;Mette Hollensted;Jeroen R Huyghe;Anne U Jackson;Goo Jun;Johanne Marie Justesen;Massimo Mangino;J. Murphy;Matt Neville;Robert Onofrio;Kerrin S Small;Heather M Stringham;Joseph Trakalo;Eric Banks;Jason Carey;Mauricio O Carneiro;Mark DePristo;Yossi Farjoun;Timothy J. Fennell;Jacqueline I Goldstein;George Grant;Martin Hrabé de Angelis;J. Maguire;Benjamin M Neale;Ryan Poplin;Shaun M Purcell;Thomas Schwarzmayr;Khalid Shakir;Joshua D Smith;Tim M. Strom;Thomas Wieland;Jaana Lindstrom;Ivan Brandslund;Cramer Christensen;Gabriela L Surdulescu;Timo A Lakka;Alex S F Doney;Peter Nilsson;Nicholas J Wareham;C. Langenberg;Tibor V Varga;Paul W Franks;Olov Rolandsson;Anders H Rosengren;Vidya S Farook;Farook Thameem;Sobha Puppala;Satish Kumar;Donna M Lehman;Christopher P Jenkinson;Joanne E Curran;Daniel Esten Hale;Sharon P Fowler;Rector Arya;Ralph A. DeFronzo;Hanna E Abboud;Ann;Pamela J Hicks;Nicholette D Palmer;Maggie C Y Ng;Donald W Bowden;Barry I Freedman;Tõnu Esko;Reedik Mägi;Lili Milani;Evelin Mihailov;Andres Metspalu;Narisu Narisu;Leena Kinnunen;Lori L Bonnycastle;Amy Swift;Dorota Pasko;Andrew R Wood;João Fadista;Toni I Pollin;Nir Barzilai;Gil Atzmon;Benjamin Glaser;Barbara Thorand;Konstantin Strauch;Annette Peters;Michael Roden;Martina Müller;L. Liang;Jennifer Kriebel;Thomas Illig;Harald Grallert;Christian Gieger;Christa Meisinger;Lars Lannfelt;Solomon K Musani;Michael D. Griswold;Herman A Taylor;G. Wilson;Adolfo Correa;Heikki Oksa;W. R. Scott;Uzma Afzal;Sian;Marie Loh;John C Chambers;Jobanpreet Sehmi;Jaspal Singh Kooner;Benjamin;Lehne;Yoon;Shin;Cho;Jong;Lee;Bok;Han;Annemari Käräjämäki;Qi Qi;Lu Qi;Jinyan Huang;Frank B. Hu;O. Melander;Marju Orho;David Aguilar;Tien Yin Wong;Jianjun Liu;Chiea;Kee Seng Chia;W. Y. Lim;Chingwen Cheng;E. Chan;E. S. Tai;Tin Aung;Allan Linneberg;Bo Isomaa;T. Meitinger;T. Tuomi;Liisa Hakaste;Jasmina Kravic;Marit E Jørgensen;T. Lauritzen;Panos Deloukas;Kathleen E Stirrups;Katharine R Owen;Andrew J Farmer;Timothy M Frayling;Stephen P O'Rahilly;M. Walker;Jonathan C Levy;Dylan Hodgkiss;Andrew T. Hattersley;Teemu Kuulasmaa;Inês Barroso;Dwaipayan Bharadwaj;Juliana Chan;G. R. Chandak;Mark J Daly;Peter J Donnelly;Shah B Ebrahim;Paul Elliott;Tasha Fingerlin;Philippe Froguel;Cheng Hu;Weiping Jia;R. C. Ma;Gilean McVean;Taesung Park;D. Prabhakaran;Manjinder Sandhu;J. Scott;Rob Sladek;Nikhil Tandon;Yik Ying Teo;Eleftheria Zeggini;Richard M Watanabe;Heikki A Koistinen;Y. A. Kesaniemi;Matti Uusitupa;Tim Spector;Veikko Salomaa;Rainer Rauramaa;Colin N A Palmer;Inga Prokopenko;Andrew D Morris;Richard N Bergman;Francis S. Collins;Lars Lind;Erik;Ingelsson;Jaakko;Tuomilehto;Fredrik;Karpe;Leif;Groop;Torben Jørgensen;Torben Hansen;Oluf Pedersen;Johanna Kuusisto;Gonçalo Abecasis - 通讯作者:
Gonçalo Abecasis
Shaun M Purcell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaun M Purcell', 18)}}的其他基金
Longitudinal Relationships Among Sleep, Cognition and Alzheimer's Disease Biomarkers: Discerning Causal Associations, Mediators and Susceptibility
睡眠、认知和阿尔茨海默病生物标志物之间的纵向关系:辨别因果关系、中介因素和易感性
- 批准号:
10583493 - 财政年份:2021
- 资助金额:
$ 64.01万 - 项目类别:
Longitudinal Relationships Among Sleep, Cognition and Alzheimer's Disease Biomarkers: Discerning Causal Associations, Mediators and Susceptibility
睡眠、认知和阿尔茨海默病生物标志物之间的纵向关系:辨别因果关系、中介因素和易感性
- 批准号:
10399412 - 财政年份:2021
- 资助金额:
$ 64.01万 - 项目类别:
Enhanced Measurement and Modeling of Sleep Electrophysiology to Better Understand Sleep Disparities
增强睡眠电生理学测量和建模,以更好地了解睡眠差异
- 批准号:
10020195 - 财政年份:2019
- 资助金额:
$ 64.01万 - 项目类别:
Sleep Physiology Dynamics: Quantification, Characterization and Genetic Dissection
睡眠生理学动力学:量化、表征和基因剖析
- 批准号:
9902196 - 财政年份:2019
- 资助金额:
$ 64.01万 - 项目类别:
Genome-wide association study of sleep spindles and related polysomnography measures
睡眠纺锤波和相关多导睡眠图测量的全基因组关联研究
- 批准号:
9332476 - 财政年份:2016
- 资助金额:
$ 64.01万 - 项目类别:
Genome-wide association study of sleep spindles and related polysomnography measures
睡眠纺锤波和相关多导睡眠图测量的全基因组关联研究
- 批准号:
9019287 - 财政年份:2016
- 资助金额:
$ 64.01万 - 项目类别:
Leveraging identity-by-descent information in large-scale population sequencing
在大规模群体测序中利用血统身份信息
- 批准号:
8704772 - 财政年份:2012
- 资助金额:
$ 64.01万 - 项目类别:
Leveraging identity-by-descent information in large-scale population sequencing
在大规模群体测序中利用血统身份信息
- 批准号:
8548408 - 财政年份:2012
- 资助金额:
$ 64.01万 - 项目类别:
Leveraging identity-by-descent information in large-scale population sequencing
在大规模群体测序中利用血统身份信息
- 批准号:
8419791 - 财政年份:2012
- 资助金额:
$ 64.01万 - 项目类别:
Software for the analysis of large-scale genotyping and sequencing studies
用于分析大规模基因分型和测序研究的软件
- 批准号:
8305019 - 财政年份:2010
- 资助金额:
$ 64.01万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Self-management Intervention for Reducing Epilepsy Burden among Ugandans with Epilepsy
减轻乌干达癫痫患者癫痫负担的自我管理干预措施
- 批准号:
10740917 - 财政年份:2023
- 资助金额:
$ 64.01万 - 项目类别:
Project 1 - Surveillance and monitoring systems to identify strategies to improve perinatal practices [Parent Title: PREVENTING INFANT INFECTIONS WITH IMPLEMENTATION SCIENCE IN MALAWI]
项目 1 - 监测和监测系统,以确定改善围产期实践的策略[父标题:马拉维通过实施科学预防婴儿感染]
- 批准号:
10701195 - 财政年份:2023
- 资助金额:
$ 64.01万 - 项目类别:
Every Day Counts: A lifestyle program for women metastatic breast cancer
每一天都很重要:针对女性转移性乳腺癌的生活方式计划
- 批准号:
10366559 - 财政年份:2022
- 资助金额:
$ 64.01万 - 项目类别:
Serious gaming for chemotherapy-induced nausea and vomiting in older adults with cancer: A randomized clinical trial
认真玩游戏可治疗老年癌症患者化疗引起的恶心和呕吐:一项随机临床试验
- 批准号:
10710034 - 财政年份:2022
- 资助金额:
$ 64.01万 - 项目类别:
A novel psychological-behavioral intervention to promote physical activity after acute coronary syndrome
一种促进急性冠脉综合征后身体活动的新型心理行为干预措施
- 批准号:
10448080 - 财政年份:2022
- 资助金额:
$ 64.01万 - 项目类别: