Personalized Postpartum Hemorrhage Prediction Using Machine Learning And Polygenic Risk Scores
使用机器学习和多基因风险评分进行个性化产后出血预测
基本信息
- 批准号:10524826
- 负责人:
- 金额:$ 16.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAlgorithmsArchitectureBody mass indexCessation of lifeChiropteraClinicalComplexComplicationDataDatabasesDecision MakingDecision TreesElectronic Health RecordGeneticGenetic RiskGenotypeGestational DiabetesGoalsHemorrhageHospitalsHourHypertensionIndividualInstitutesInvestigationLaboratoriesLeadLinkLogistic RegressionsMachine LearningMaternal HealthMaternal MortalityMedical GeneticsMentorsMethodsModelingNatureObesityOutcomePatientsPerformancePharmaceutical PreparationsPhysiciansPostpartum HemorrhagePredictive ValuePregnancyPregnancy OutcomePremature BirthProcessProlonged laborPublishingResearchResourcesRiskRisk FactorsScientistUnited StatesUnited States National Institutes of Healthbasebilling databiobankblack womenclinical practiceclinical riskcollaborative environmentcomputerized toolsdemographicsepidemiology studyevidence basegenetic risk factorgenome wide association studygenomic locushigh riskimprovedinnovationmachine learning methodmachine learning modelmaternal morbiditymaternal safetymedical schoolsmulti-ethnicneural networknovelobstetric outcomespatient stratificationpersonalized predictionspolygenic risk scoreprediction algorithmpredictive modelingpregnantpreventracial biasracial disparityrisk predictionrisk stratificationsafety outcomessevere maternal morbidityskillsstandard of caretooltraittranslational research program
项目摘要
ABSTRACT
Postpartum hemorrhage, defined as estimated blood loss of at least 1000 mL within 24 hours of delivery, is the
leading cause for severe maternal morbidity and mortality. Annually, postpartum hemorrhage complicates 2-3%
of all pregnancies and accounts for 140,000 maternal deaths globally. In the United States, there are also
significant racial disparities: Black women have a five-fold higher risk of hemorrhage-related death compared to
non-Black women. While clinical postpartum hemorrhage risk prediction tools have been developed, they fail to
identify up to 40% of cases; as a result, no evidence-based prediction tool is currently widely adopted in clinical
practice. Thus, an efficient, precise, and personalized postpartum hemorrhage risk prediction tool is urgently
needed. Recently, machine learning approaches have been increasingly used to develop accurate predictive
models with superior performance compared to the traditional statistical approaches and to discover new
predictors, with little prior pre-specification. Moreover, the explainable machine learning methods allow for
transparent decision making and reduction of bias. In this way, machine learning models may lead to more
accurate postpartum hemorrhage prediction than currently existing tools. In addition, since up to 18% of
postpartum hemorrhage risk is familial and many of the clinical risk factors associated with postpartum
hemorrhage have a well-established polygenic architecture, using polygenic risk tools may further enhance
postpartum hemorrhage risk prediction. In line with the NIH IMPROVE initiative goals to improve maternal safety
and outcomes, we propose here to develop a high-fidelity algorithm, combining both clinical and genetic factors,
to more accurately predict the risk of postpartum hemorrhage in pregnant individuals. We will leverage our rich
patient database and state-of-the-art computational tools to: (1) develop an improved algorithm to stratify patient
postpartum hemorrhage risk with a focus on transparency and bias reduction, and (2) delineate the contribution
of the genetics to postpartum hemorrhage risk. Overall, this project will advance our ability to precisely predict
patients at risk for postpartum hemorrhage, with the investigation of novel predictors, interaction between clinical
and genetic contributors, and novel application of both machine learning and polygenic risk scores to these
outcomes. Ultimately, we aim to validate and implement these tools in clinical practice, leading to greatly
enhanced ability to prevent maternal morbidity and mortality. By completion of these aims, I will develop a
specific skill set essential for establishing my research trajectory and transition to independence as a physician-
scientist utilizing translational computational approaches to predict and improve adverse obstetric outcomes.
抽象的
产后出血定义为在分娩后24小时内至少1000毫升的估计失血量是
严重孕产妇发病率和死亡率的主要原因。每年,产后出血使2-3%复杂化
在所有怀孕中,全球造成140,000人死亡。在美国,也有
种族差异很大:黑人妇女与出血相关死亡的风险高五倍
非黑人妇女。尽管已经开发了临床产后出血风险预测工具,但它们未能
确定多达40%的病例;结果,目前没有在临床中广泛采用基于证据的预测工具
实践。因此,紧急的有效,精确和个性化的产后出血风险预测工具是
需要。最近,机器学习方法越来越多地用于发展准确的预测
与传统的统计方法相比,具有出色性能的模型并发现新的模型
预测因素,几乎没有事先预定。此外,可解释的机器学习方法允许
透明决策和偏见的减少。这样,机器学习模型可能会导致更多
与当前现有的工具相比,准确的产后出血预测。此外,由于多达18%
产后出血风险是家族性的,许多临床风险因素与产后有关
出血具有良好的多基因结构,使用多基因风险工具可能会进一步增强
产后出血风险预测。根据NIH提高计划的目标,以提高孕产妇的安全性
结果,我们在这里提议开发一种高保真算法,结合了临床和遗传因素,
更准确地预测孕妇产后出血的风险。我们将利用我们的富人
患者数据库和最先进的计算工具:(1)开发改进的算法以对患者进行分层
产后出血风险,重点是透明度和降低偏见,(2)描述贡献
产后出血风险的遗传学。总体而言,该项目将提高我们精确预测的能力
有产后出血风险的患者,并研究了新的预测因子,临床之间的相互作用
和遗传贡献者,以及机器学习和多基因风险评分的新颖应用
结果。最终,我们旨在在临床实践中验证和实施这些工具,从而极大地
增强了预防母体发病率和死亡率的能力。通过完成这些目标,我将发展一个
特定技能集对于建立我的研究轨迹和向独立过渡至独立性至关重要的特定技能集 -
科学家利用翻译计算方法来预测和改善不良产科结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vesela Kovacheva其他文献
Vesela Kovacheva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vesela Kovacheva', 18)}}的其他基金
Personalized Postpartum Hemorrhage Prediction Using Machine Learning And Polygenic Risk Scores
使用机器学习和多基因风险评分进行个性化产后出血预测
- 批准号:
10670427 - 财政年份:2022
- 资助金额:
$ 16.85万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别:
Value of Sleep Metrics in Predicting Opioid-Use Disorder Treatment Outcomes: Leadership and Data Coordinating Center
睡眠指标在预测阿片类药物使用障碍治疗结果中的价值:领导力和数据协调中心
- 批准号:
10783610 - 财政年份:2023
- 资助金额:
$ 16.85万 - 项目类别: