Extracellular Matrix Impacts Angiogenesis and Growth Plate Repair
细胞外基质影响血管生成和生长板修复
基本信息
- 批准号:10668056
- 负责人:
- 金额:$ 16.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlginatesAngiogenesis InhibitionAngiogenesis InhibitorsAngiogenic PeptidesAnimal ModelAntibodiesAreaBiocompatible MaterialsBone GrowthCartilageChildChildhoodChitosanChondrogenesisClinicClinicalCuesDeformityDevelopmentEndothelial CellsEnvironmentEpiphysial cartilageExtracellular MatrixFractureGoalsGrowthHistologicHyaluronic AcidHydrogelsImpairmentIn VitroInjectableInjuryLinkModelingModificationMolecular WeightOperative Surgical ProceduresOsteogenesisPathway interactionsPeptidesPhysiologicalPlayPreventionProcessRattusResearchRoleSignal PathwaySignal TransductionSiteSkeletonSystemTechnologyTissuesTranslatingTranslationsVascular Endothelial Growth FactorsWorkangiogenesisbiomaterial developmentbonecartilaginouscell behaviorcostdisabilityhealingin vivoinjuredinnovationlong bonemicroCTnovelpediatric patientspreventprotein aminoacid sequenceregenerativeregenerative therapyrepairedresponsetissue repairtranscriptome sequencingtreatment strategy
项目摘要
PROJECT SUMMARY
Growth plate injuries, which account for 30% of all pediatric fractures, can impair bone growth and even halt it
completely. For children who are still growing, these injuries can be devastating. The growth plate (or physis) is
a cartilage region found at the end of all long bones in children and is responsible for longitudinal bone growth.
It is a weak area of the developing skeleton and prone to injury. Once damaged, cartilage tissue within the growth
plate can be replaced by unwanted bony tissue, forming a “bony bar”, which can lead to angular deformities or
complete growth arrest. Pediatric patients who sustain these injuries may require multiple surgical interventions
during childhood. Innovative treatment strategies that prevent initial bony bar formation, thus avoiding growth
deformities and potential lifelong disability, are critically needed. The goal of this project is to develop clinically
useful treatment strategies for growth plate injuries that prevent bony bar formation and associated growth
problems. One approach is to target mechanisms responsible for unwanted bony repair tissue, which include
angiogenic signaling pathways. These pathways are regulated at many levels and can be modulated by insoluble
cues such as extracellular matrix factors. The modulation of these cues via a material-only system could provide
significant benefit to ultimate translation of such a regenerative therapy. Our hypothesis is that targeted disruption
of angiogenic signaling cascades after growth plate injury through insoluble cues such as extracellular matrix
factors will inhibit angiogenesis and completely prevent bony bar formation. We will examine this with the
following 2 aims: AIM 1: To quantify the impact of hyaluronic acid (HA) on the angiogenic response that occurs
after growth plate injury. As HA is known to be important in angiogenic signaling, but as its effect can be varied
in different physiologic settings and as its impact in the growth plate after injury has not been studied, here we
will investigate varying molecular weights of HA. Angiogenesis and bony bar prevention will be evaluated in our
rat model of growth plate injury using bulk RNA-seq, microCT, immunostaining and histological assessment. AIM
2: To quantify the impact of specific peptide sequences on the angiogenic response that occurs after growth
plate injury. Here 4 different peptides with established inhibitory effects on angiogenesis and osteogenesis will
be covalently linked to our alginate hydrogels to study their influence on cell behavior. This Aim will quantify the
impact of these peptides on angiogenesis, osteogenesis, and chondrogenesis in vitro and on the angiogenesis
and osteogenesis that occurs in vivo in a rat growth plate injury model, as quantified using bulk RNAseq, microCT,
immunostaining, and histological assessment. This project will provide important information about the impact of
extracellular matrix cues in de novo growth plate injury healing and bony bar formation, supporting the
development of novel biomaterial-based approaches to preventing bony bar formation. Ultimately, we will
translate the technology to larger animal models of growth plate injuries, and eventually into the clinic. This
research will help address a critical unmet clinical need for children suffering from growth plate injuries.
项目概要
生长板损伤占所有儿童骨折的 30%,会损害甚至阻止骨骼生长
对于仍在生长的儿童来说,生长板(或骨骺板)的损伤可能是毁灭性的。
位于儿童所有长骨末端的软骨区域,负责纵向骨骼生长。
它是发育中骨骼的薄弱区域,一旦受损,生长内的软骨组织就容易受伤。
板可能会被不需要的骨组织取代,形成“骨棒”,这可能导致角度畸形或
遭受这些伤害的儿童患者可能需要多次手术干预。
儿童时期的创新治疗策略可防止最初的骨棒形成,从而避免生长。
畸形和潜在的终身残疾是迫切需要的,该项目的目标是临床开发。
生长板损伤的有用治疗策略,可防止骨棒形成和相关生长
一种方法是针对导致不需要的骨修复组织的机制,其中包括
这些途径在多个层面上受到调节,并且可以通过不溶性物质来调节。
通过纯材料系统调节这些线索可以提供诸如细胞外基质因子的线索。
我们的假设是有针对性的破坏对这种再生疗法的最终转化有显着的好处。
生长板损伤后通过细胞外基质等不溶性信号传导血管生成信号级联
因素会抑制血管生成并完全阻止骨棒形成,我们将用以下方法检查这一点。
以下 2 个目标: 目标 1:量化透明质酸 (HA) 对发生的血管生成反应的影响
众所周知,HA 在血管生成信号传导中很重要,但其作用可能各不相同。
在不同的生理环境下,由于其对损伤后生长板的影响尚未研究,在这里我们
将研究不同分子量的 HA 的血管生成和骨棒预防将在我们的研究中进行评估。
使用bulk RNA-seq、microCT、免疫染色和组织学评估建立大鼠生长板损伤模型。
2:量化特定肽序列对生长后发生的血管生成反应的影响
这里有 4 种不同的肽,对血管生成和骨生成具有抑制作用。
与我们的藻酸盐水凝胶共价连接,以研究它们对细胞行为的影响。
这些肽对体外血管生成、骨生成和软骨生成的影响以及对血管生成的影响
以及大鼠生长板损伤模型中体内发生的成骨作用,使用bulk RNAseq、microCT、
该项目将提供有关影响的重要信息。
细胞外基质在新生生长板损伤愈合和骨棒形成中发挥作用,支持
最终,我们将开发基于生物材料的新型方法来防止骨棒形成。
将该技术应用于更大的生长板损伤动物模型,并最终进入临床。
研究将有助于解决患有生长板损伤的儿童未得到满足的关键临床需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Krebs其他文献
Melissa Krebs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Sustained regulation of hypothalamus-pituitary-ovary hormones with tissue-engineered ovarian constructs as a treatment for osteoporosis in females
利用组织工程卵巢结构持续调节下丘脑-垂体-卵巢激素作为女性骨质疏松症的治疗方法
- 批准号:
10659277 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Deep Learning-reinforced Engineering of Pancreatic Organoids with Micro-nano Biomaterials for Type 1 Diabetes Treatment
利用微纳米生物材料深度学习强化胰腺类器官工程治疗 1 型糖尿病
- 批准号:
10389894 - 财政年份:2022
- 资助金额:
$ 16.89万 - 项目类别:
Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids
使用粘弹性生物材料和肾类器官研究肾发生的机械调节
- 批准号:
10536817 - 财政年份:2022
- 资助金额:
$ 16.89万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
$ 16.89万 - 项目类别: