Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids
使用粘弹性生物材料和肾类器官研究肾发生的机械调节
基本信息
- 批准号:10536817
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAlginatesArchitectureBiocompatible MaterialsBiologyBiomechanicsBiomedical EngineeringCell ProliferationCellsChronic Kidney FailureCollaborationsComplexComputer AnalysisComputer ModelsCuesDependenceDevelopmental BiologyDialysis procedureDisease ProgressionDrug ScreeningEmbryoEngineeringExtracellular MatrixGene Expression ProfileGoalsGrowthHospitalsHumanHydrogelsIn VitroKidneyKidney DiseasesKidney TransplantationKnowledgeMechanicsMediator of activation proteinMesenchymalMesenchymeModelingMolecularMorbidity - disease rateMorphologyMusNatural regenerationNephronsOrganoidsPatientsPublic HealthRegulationRenal dialysisResearchResearch PersonnelRoleStructureTechniquesTestingTimeTissuesTrainingUniversitiesWomanWorkalternative treatmentbasecell behaviordesignexperimental analysishuman pluripotent stem cellin vivoinsightinterstitialmechanical behaviormechanical propertiesmechanical signalmigrationmortalitynephrogenesisnephron progenitorrepair strategyrepairedresponseskillsstem cell differentiationstem cellsthree dimensional cell culturetransplantation therapyviscoelasticity
项目摘要
PROJECT SUMMARY
Chronic kidney disease (CKD) affects ~15% of adults in the US and is associated with the irreversible loss of
nephrons, which form the basic functional unit of the kidney. There is currently no cure for CKD, and treatments
such as kidney transplantation and dialysis have a high morbidity and mortality. Developing strategies for
repairing or replacing nephrons will address this significant public health problem by providing an alternative
treatment for patients and a new model of kidney development and disease for drug screening.
Mechanical properties of the extracellular matrix, such as stiffness and viscoelasticity, regulate key aspects of
cell behavior that drive nephrogenesis in vivo, including proliferation, differentiation, and migration. However,
while the molecular mediators that drive nephrogenesis have been studied extensively, the role of matrix
mechanics in nephrogenesis remains unclear. Beyond elucidating the role of biomechanics in kidney
development, understanding the functional role of the mechanical microenvironment in nephrogenesis will help
to inform engineering strategies to reproduce nephrogenesis in vitro. The goal of this proposal is to integrate
3D viscoelastic alginate hydrogels and kidney organoids to test the hypothesis that the mechanical
microenvironment regulates nephrogenesis. The first aim is to determine the role of matrix stiffness and
viscoelasticity in the differentiation of human pluripotent stem cells into multipotent nephron progenitor cells and
the subsequent cellular organization of nephrons in kidney organoids. The second aim is to investigate how
hydrogel architecture affects the morphology and maturation of kidney organoids. These aims will be
accomplished by integrating bioengineering, biomaterials, developmental biology, computational modeling, and
mechanical characterization techniques.
Completion of this project will deepen our understanding of the role of the mechanical microenvironment in the
formation of nephrons and will fill a substantial knowledge gap regarding our fundamental understanding of
kidney development and stem cell differentiation in vivo. This work will also illuminate design principles for
engineering new biomaterials that support nephrogenesis in culture and the regeneration of nephrons in vivo.
The training will take place in the Mooney Lab at Harvard University in collaboration with the Mahadevan Lab at
Harvard University and the Bonventre Lab at Brigham and Women's Hospital. The training plan will enhance the
applicant’s skills in biomaterials design, quantitative biology, and kidney organoid culture and provide a broad
understanding of kidney development and disease.
项目摘要
慢性肾脏疾病(CKD)影响了美国约15%的成年人,并且与不可逆转的丧失有关
肾单位,构成肾脏的基本功能单元。目前无法治愈CKD和治疗
例如肾脏移植和透析具有很高的发病率和死亡率。制定策略
维修或替换肾单位将通过提供替代方案来解决这个重大的公共卫生问题
患者的治疗以及用于药物筛查的肾脏发育和疾病的新模型。
细胞外基质的机械性能,例如刚度和粘弹性,调节了关键方面
驱动体内肾病的细胞行为,包括增殖,分化和迁移。然而,
虽然驱动肾脏发生的分子介质已经进行了广泛研究,但矩阵的作用
肾病中的力学尚不清楚。除了阐明生物力学在肾脏中的作用
开发,了解机械微环境在肾脏发生中的功能作用将有助于
告知工程策略以在体外再现肾病。该提议的目的是整合
3D粘弹性算法水凝胶和肾脏器官,以检验机械的假设
微环境调节肾病。第一个目的是确定矩阵刚度和
人多能干细胞分化为多能肾单位祖细胞和
随后的肾脏器官肾单位细胞组织。第二个目的是调查如何
水凝胶结构会影响肾脏器官的形态和成熟。这些目标将是
通过整合生物工程,生物材料,发育生物学,计算建模和
机械表征技术。
该项目的完成将加深我们对机械微环境在
形成肾单位,并将填补有关我们对我们对的基本理解的巨大知识差距
体内肾脏发育和干细胞分化。这项工作还将阐明
工程新的生物材料,支持培养和体内肾肾脏再生的肾病。
该培训将在哈佛大学的穆尼实验室与Mahadevan实验室合作
哈佛大学和杨百翰和妇女医院的Bonventre实验室。培训计划将增强
申请人在生物材料设计,定量生物学和肾脏器官文化方面的技能,并提供广泛的
了解肾脏发育和疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Nerger其他文献
Bryan Nerger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Nerger', 18)}}的其他基金
Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids
使用粘弹性生物材料和肾类器官研究肾发生的机械调节
- 批准号:
10705067 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别: