Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
基本信息
- 批准号:10669186
- 负责人:
- 金额:$ 68.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:90YAccelerationAddressAdoptionCancer EtiologyCessation of lifeClinicClinicalClinical ResearchClinical TrialsComplexDataDiseaseDoseEvaluable DiseaseExternal Beam Radiation TherapyFailureFoundationsFundingFutureGoalsHepatotoxicityImageJoint repairJointsLesionLiverLiver parenchymaMalignant NeoplasmsMapsMathematicsMethodsMicrospheresModalityModelingMotivationNoisePET/CT scanPatient-Focused OutcomesPatientsPerformancePhasePhase I Clinical TrialsPhotonsPhysicsPilot ProjectsPositron-Emission TomographyPrimary carcinoma of the liver cellsProcessPublic HealthRadiationRadiation Dose UnitRadiation ToleranceRadiation therapyRadioembolizationRadionuclide therapyReportingSafetyScanningTestingToxic effectTrainingabsorptionclinical practiceclinically relevantconvolutional neural networkdeep learningdenoisingdosimetryimage reconstructionimaging Segmentationimprovedinnovationinternal radiationlearning strategymultimodal datamultimodalitynext generationnovelnovel strategiespersonalized cancer therapyphase II trialprospectiveradiation deliveryreconstructionresponsesingle photon emission computed tomographystandard of caretooltrial designtumor
项目摘要
Abstract
Selective internal radiation therapy (SIRT) with preferential delivery of 90Y microspheres to target lesions has
shown promising response rates with limited toxicity in the treatment of hepatocellular (HCC), the second leading
cause of cancer death in the world. However, to achieve more durable responses, there is much room to
improve/adapt the treatment to ensure that all lesions and lesion sub-regions receive adequate radiation delivery.
While externally delivered stereotactic body radiation therapy (SBRT) is well suited for smaller solitary HCC, its
application for larger or multifocal disease is challenged by the radiation tolerance of the normal liver
parenchyma. A dosimetry guided combined approach that exploits complementary advantages of internal and
external radiation delivery can be expected to improve treatment of HCC. To make this transition, however,
prospective clinical trials establishing safety are needed. Furthermore, for routine clinic use, accurate and fast
voxel-level dose estimation in internal radionuclide therapy, that lags behind external beam therapy dosimetry,
is still needed. Our long-term goal is to improve the efficacy of radiation therapy with personalized dosimetry
guided treatment. Our objective in this application is to demonstrate that it is possible to use 90Y imaging based
absorbed dose estimates after SIRT to safely deliver external radiation to target regions (voxels) that are
predicted to be underdosed and to develop deep learning based tools to make voxel-level internal dose
estimation practical for routine clinic use. Specifically, in Aim 1, we will perform a Phase 1 clinical trial in HCC
patients where we will take the novel approach of using the 90Y PET/CT derived absorbed dose map after SIRT
to deliver SBRT to tumor regions predicted to be underdosed based on previously established dose-response
models. The primary objective of the trial is to obtain estimates of safety of combined SIRT+SBRT for future
Phase II trial design. In parallel, in Aim 2, building on promising initial results we will develop novel deep learning
based tools for 90Y PET/CT and SPECT/CT reconstruction, joint reconstruction-segmentation and scatter
estimation under the low count-rate setting, typical for 90Y. These methods have a physics/mathematics
foundation, where convolutional neural networks (CNNs) are included within the iterative reconstruction process,
instead of post-reconstruction denoising. In Aim 3, we will develop a CNN for fast voxel-level dosimetry and
combine with the CNNs of Aim 2 to develop an innovative end-to-end framework with unified dosimetry-task
based training. At the end of this study, we will be ready to use the new deep learning tools in a Phase II trial to
demonstrate enhanced efficacy with SIRT+SBRT compared with SIRT alone and advance towards our long-
term goal. This will accelerate adoption of these next-generation tools in clinical practice and will have a
significant positive impact because treatment based on patient specific dosimetry will substantially improve
efficacy, compared with current standard practice in SIRT. Although we focus on 90Y SIRT, our tools will be
applicable in radionuclide therapy in general, a rapidly advancing treatment option.
抽象的
选择性内部放射疗法(SIRT)优先递送90y微球向目标病变
显示出有希望的反应率,在肝细胞(HCC)治疗中毒性有限,第二领先
世界上癌症死亡的原因。但是,为了获得更耐用的响应,还有很大的空间
改进/适应治疗,以确保所有病变和病变子区域都能获得足够的辐射输送。
虽然外部交付的立体定向身体放射疗法(SBRT)非常适合较小的孤立性HCC,但它
正常肝脏的辐射耐受性挑战了较大或多灶性疾病
实质。剂量指导的联合方法,利用了内部和内部和
可以预期外部辐射递送可以改善HCC的处理。但是,要使这个过渡
需要确定安全性的前瞻性临床试验。此外,为常规诊所使用,准确而快速
内部放射性核素治疗中的体素水平剂量估计,落后于外束治疗剂量测定法,
仍然需要。我们的长期目标是通过个性化剂量法提高放射治疗的功效
指导治疗。我们在此应用程序中的目标是证明可以使用基于90年成像的
SIRT后吸收的剂量估计值安全地向目标区域(体素)安全地传递外部辐射
预计被剂量不足,并开发基于深度学习的工具来制作体素级的内部剂量
常规诊所使用的估计实用。具体而言,在AIM 1中,我们将在HCC中进行1期临床试验
患者将采用新颖的方法,即在SIRT后使用90Y PET/CT衍生的吸收剂量图
将SBRT运送到预测基于先前确定的剂量反应被低估的肿瘤区域
型号。该试验的主要目的是获得对未来联合SIRT+SBRT的安全性估算值
第二阶段试验设计。同时,在AIM 2中,以有希望的初始结果为基础,我们将发展新颖的深度学习
基于90Y PET/CT和SPECT/CT重建,联合重建分割和分散的工具
低计数设置下的估计,通常为90年。这些方法具有物理/数学
基础,卷积神经网络(CNN)包括在迭代重建过程中
而不是后施加后的变态。在AIM 3中,我们将开发用于快速体素级剂量测定法的CNN和
与AIM 2的CNN相结合,以统一的剂量任务开发创新的端到端框架
基于培训。在这项研究结束时,我们将准备在第二阶段试验中使用新的深度学习工具
与单独使用SIRT相比,SIRT+SBRT的功效增强
任期目标。这将加速临床实践中这些下一代工具的采用,并将有一个
重大积极影响,因为基于患者特定剂量法的治疗将大大改善
与当前标准实践相比,功效。尽管我们专注于90年的sirt,但我们的工具将是
通常适用于放射性核素治疗,这是一种快速前进的治疗选择。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y-90 SIRT: evaluation of TCP variation across dosimetric models.
- DOI:10.1186/s40658-021-00391-6
- 发表时间:2021-06-10
- 期刊:
- 影响因子:4
- 作者:Van BJ;Dewaraja YK;Sangogo ML;Mikell JK
- 通讯作者:Mikell JK
Improved Low-Count Quantitative PET Reconstruction With an Iterative Neural Network.
- DOI:10.1109/tmi.2020.2998480
- 发表时间:2020-11
- 期刊:
- 影响因子:10.6
- 作者:Lim H;Chun IY;Dewaraja YK;Fessler JA
- 通讯作者:Fessler JA
A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging.
- DOI:10.1088/1361-6560/aaa71b
- 发表时间:2018-02-06
- 期刊:
- 影响因子:3.5
- 作者:Lim H;Dewaraja YK;Fessler JA
- 通讯作者:Fessler JA
A deep neural network for fast and accurate scatter estimation in quantitative SPECT/CT under challenging scatter conditions.
- DOI:10.1007/s00259-020-04840-9
- 发表时间:2020-12
- 期刊:
- 影响因子:9.1
- 作者:Xiang H;Lim H;Fessler JA;Dewaraja YK
- 通讯作者:Dewaraja YK
Transarterial Radioembolization for Hepatocellular Carcinoma and Hepatic Metastases: Clinical Aspects and Dosimetry Models.
- DOI:10.1016/j.semradonc.2019.08.005
- 发表时间:2020-01
- 期刊:
- 影响因子:3.5
- 作者:Mikell JK;Dewaraja YK;Owen D
- 通讯作者:Owen D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUNI K DEWARAJA其他文献
YUNI K DEWARAJA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUNI K DEWARAJA', 18)}}的其他基金
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
10165668 - 财政年份:2020
- 资助金额:
$ 68.43万 - 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
10620806 - 财政年份:2020
- 资助金额:
$ 68.43万 - 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
10413036 - 财政年份:2020
- 资助金额:
$ 68.43万 - 项目类别:
Bringing Capacity for Theranostic Dosimetry Planning to the Nuclear Medicine Clinic
为核医学诊所带来治疗诊断剂量测定规划的能力
- 批准号:
9973682 - 财政年份:2020
- 资助金额:
$ 68.43万 - 项目类别:
Enhancing low count PET and SPECT imaging with deep learning methods
利用深度学习方法增强低计数 PET 和 SPECT 成像
- 批准号:
10403701 - 财政年份:2016
- 资助金额:
$ 68.43万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10406365 - 财政年份:2016
- 资助金额:
$ 68.43万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10206138 - 财政年份:2016
- 资助金额:
$ 68.43万 - 项目类别:
Imaging and Dosimetry of Yttrium-90 for Personalized Cancer Treatment
用于个性化癌症治疗的 Yttrium-90 成像和剂量测定
- 批准号:
10052989 - 财政年份:2016
- 资助金额:
$ 68.43万 - 项目类别:
POST-TRACER AND POST-THERAPY IMAGING USING A NEW SPECT-CT INTEGRATED SYSTEM FOR
使用新的 SPECT-CT 集成系统进行示踪剂后和治疗后成像
- 批准号:
7376642 - 财政年份:2006
- 资助金额:
$ 68.43万 - 项目类别:
MONTE CARLO SIMULATION OF HIGH ENERGY PHOTON IMAGING
高能光子成像的蒙特卡罗模拟
- 批准号:
6377075 - 财政年份:1999
- 资助金额:
$ 68.43万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 68.43万 - 项目类别:
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 68.43万 - 项目类别:
Implementation Science and Equity: Community Engagement & Outreach (CEO) Core
实施科学与公平:社区参与
- 批准号:
10557511 - 财政年份:2023
- 资助金额:
$ 68.43万 - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 68.43万 - 项目类别: