Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
基本信息
- 批准号:10629148
- 负责人:
- 金额:$ 38.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAreaAtlasesBlindnessCaringClinicClinic VisitsClinicalClinical ManagementCollaborationsColorComplexCross-Sectional StudiesDataData SetDecision MakingDetectionDevelopmentDiseaseDisease ProgressionDisease modelEarly DiagnosisEyeFutureGlaucomaImageImage AnalysisImaging technologyIndividualInterventionInvestmentsKnowledgeLearningLocationMachine LearningMapsMeasurableMeasurementMedical ImagingMethodsModelingMonitorMorbidity - disease rateOphthalmologyOptical Coherence TomographyOutcomePatientsPerformanceResearchResearch ProposalsRetinaSamplingSeriesSpeedStructureSystemTechniquesTechnologyTestingThickThinnessTimeTissuesTrainingVisionVisitVisual Fieldsanalytical methodbrain magnetic resonance imagingcase-by-case basisclinical applicationclinical practicecohortcomputerizedcostdeep learningdeep learning modelfallsfeature selectionfollow-upimage processingimaging modalityimprovedin vivoindividual patientinnovationinsightknowledge baselongitudinal analysislongitudinal datasetmachine learning methodnovelocular imagingpersonalized approachpersonalized medicinepersonalized predictionspredictive modelingpreservationpreventprogramsretinal nerve fiber layertheoriestooltreatment planningtrend
项目摘要
Project Summary
Glaucoma is a leading cause of vision morbidity and blindness worldwide. Early disease detection and
sensitive monitoring of progression are crucial to allow timely treatment for preservation of vision. The
introduction of ocular imaging technologies significantly improves these capabilities, but in clinical practice
there are still substantial challenges at managing the optimal care for individual cases due to difficulties of
accurately assessing the potential progression and its speed and magnitude. These difficulties are due to a
variety of causes that change over the course of the disease, including large inter-subject variability, inherent
measurement variability, image quality, varying dynamic ranges of measurements, minimal measurable level of
tissues, etc. In this proposal, we propose novel agnostic data-driven deep learning approaches to detect
glaucoma and accurately forecast its progression that are optimized to each individual case. We will use state-
of-the-art automated computerized machine learning methods, namely the deep learning approach, to identify
structural features embedded within OCT images that are associated with glaucoma and its progression
without any a priori assumptions. This will provide novel insight into structural information, and has shown very
encouraging preliminary results. Instead of relying on the conventional knowledge-based approaches (e.g.
quantifying tissues known to be significantly associated with glaucoma such as retinal nerve fiber layer), the
proposed cutting-edge agnostic deep learning approaches determine the features responsible for future
structural and functional changes out of thousands of features autonomously by learning from the provided
large longitudinal dataset. This program will advance the use of structural and functional information obtained
in the clinics with a substantial impact on the clinical management of subjects with glaucoma. Furthermore, the
developed methods have potentials to be applied to various clinical applications beyond glaucoma and
ophthalmology.
项目摘要
青光眼是全球视力发病率和失明的主要原因。早期疾病检测和
对进展的敏感监测对于允许及时治疗视力至关重要。这
引入眼成像技术可显着提高这些能力,但在临床实践中
由于困难
准确评估潜在的进展及其速度和幅度。这些困难是由于
在整个疾病过程中变化的原因多种多样,包括大型主体间可变性,固有的
测量可变性,图像质量,不同的测量动态范围,可测量的最小水平
在此提案中,我们提出了新的不可知论数据驱动的深度学习方法来检测
青光眼和准确预测其进展已被优化为每种情况。我们将使用状态 -
艺术自动化的计算机化机器学习方法,即深度学习方法,以识别
与青光眼相关的OCT图像中嵌入的结构特征及其进展
没有任何先验假设。这将为结构信息提供新颖的见解,并显示出非常
鼓励初步结果。而不是依靠传统的基于知识的方法(例如
量化已知与青光眼显着相关的组织,例如视网膜神经纤维层),
拟议的尖端不可知论深度学习方法决定了负责未来的功能
通过从提供的内容中学习的数千个功能的结构和功能变化。
大型纵向数据集。该程序将推动获得获得的结构和功能信息的使用
在诊所中,对青光眼受试者的临床管理产生了重大影响。此外,
开发的方法具有可应用于青光眼以外的各种临床应用和
眼科。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROSHI ISHIKAWA其他文献
HIROSHI ISHIKAWA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROSHI ISHIKAWA', 18)}}的其他基金
Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
- 批准号:
10089451 - 财政年份:2020
- 资助金额:
$ 38.07万 - 项目类别:
Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
- 批准号:
10533641 - 财政年份:2020
- 资助金额:
$ 38.07万 - 项目类别:
Deep Learning Approaches for Personalized Modeling and Forecasting of Glaucomatous Changes
用于青光眼变化个性化建模和预测的深度学习方法
- 批准号:
10357755 - 财政年份:2020
- 资助金额:
$ 38.07万 - 项目类别:
相似国自然基金
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
- 批准号:72304011
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
面向有限监督信息的脑影像感兴趣区域分割及应用
- 批准号:62376123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
壳聚糖-没食子酸“共价牵手”协同焦磷酸盐“区域保护”调控肌原纤维蛋白凝胶特性的分子机制研究
- 批准号:32302110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双区域自然对流耦合模型的高效数值方法研究
- 批准号:12361077
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
典型中小城市区域暴雨积水动态过程集合量化智能解析研究
- 批准号:52379008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别: