Multiomic genomic mapping with long read sequencing
使用长读长测序进行多组基因组作图
基本信息
- 批准号:10546355
- 负责人:
- 金额:$ 40.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesAutomationBenchmarkingBiological AssayBiomedical ResearchBlood specimenCell Differentiation processCell LineCellsCellular AssayCentromereChIP-seqChimeric ProteinsChromatinDNADNA MethylationDNA Modification MethylasesDNA sequencingDataData SetDevelopmentElementsEnzymesEpigenetic ProcessGTP-Binding Protein alpha Subunits, GsGene Expression RegulationGenerationsGenetic TranscriptionGenomeGenomic SegmentGenomic approachGenomicsHeterogeneityHistonesLabelMapsMeasuresMethylationPathway interactionsPhasePopulationPost-Translational Protein ProcessingProductionProtein MethylationProteinsProtocols documentationRepetitive SequenceResolutionSamplingSignal TransductionStretchingUniversitiesValidationWorkbasebiomarker discoverybisulfite sequencingcancer cellcell typeclinical applicationclinically relevantdata analysis pipelinedrug developmentepigenomicshuman diseaseinnovationinterestmultiple omicsnovelparalogous geneperipheral bloodpreservationresearch and developmentresponsesequencing platformsingle moleculetargeted sequencingtelomere
项目摘要
PROJECT SUMMARY
Genomic mapping of histone post-translational modifications (PTMs), chromatin-associated proteins
(CAPs), and DNA methylation (DNAme) is a powerful approach for biomedical research and drug development.
Current genomics assays (e.g. ChIP-seq, CUT&RUN) rely on second generation short-read sequencing (SRS),
wherein short reads (<500bp) limit the ability to a) analyze concordance of epigenomic features on a single DNA
molecule and b) map to repetitive regions of the genome. Third generation long-read sequencing (LRS) platforms
are capable of sequencing long reads (>10kb, even >100kb) from a single molecule, and are poised to
revolutionize genomics by overcoming the significant limitations of SRS. By preserving long stretches of DNA,
LRS allows relationships between features on a single molecule to be used to resolve heterogeneity within mixed
populations. This is highly relevant for clinical applications, as it enables analysis of signatures of specific cells
within a sample without the need for single cell assays (which generate very sparse data). Further, sequencing
of long reads allows mapping to challenging and repetitive regions of the genome, which were previously
“unmappable” with SRS. Development of epigenetic mapping assays that use LRS provides an unprecedented
opportunity to decipher the chromatin landscape of cells within mixed populations, including within previously
unmappable genomic regions. However, assays to measure epigenetic elements using LRS are lacking.
Here, EpiCypher is collaborating with LRS expert Dr. Winston Timp at Johns Hopkins University to
develop CUTANA-LRS, a first-in-class multiomics assay platform that leverages LRS to simultaneously profile
histone PTMs or CAPs and DNAme in a single assay. The innovation of CUTANA-LRS is the development of a
proprietary, nondestructive approach for epigenomic mapping that leverages a novel DNA methyltransferase
fusion protein to label chromatin features of interest. This approach was inspired by related immunotethering-
based approaches for genomic mapping that EpiCypher is developing and commercializing (e.g. CUT&RUN).
In CUTANA-LRS, DNA molecules are labeled and preserved intact for LRS, which will allow resolution of
heterogeneity within / between data types, and will provide access to previously unmappable genomic regions.
Together, these advances will provide a pathway to better understand mechanisms of gene regulation and
transcriptional response, including in the context of human disease. In Aim 1, we will optimize CUTANA-LRS
and map multiple targets, including within challenging regions, while also profiling native DNAme. In Aim 2, we
will rigorously develop CUTANA-LRS by optimizing robust protocols across diverse targets, inputs, sequencing
platforms, and incorporate a targeted enrichment approach. In Aim 3, we will prepare for commercial launch of
CUTANA-LRS, develop automated protocols, perform external validation, and demonstrate a clinical application.
This work will establish CUTANA-LRS as a revolutionary platform for mapping and deciphering the relationships
between multiple types of chromatin features with access to previously “unmappable” regions.
项目概要
组蛋白翻译后修饰 (PTM)、染色质相关蛋白的基因组作图
(CAP) 和 DNA 甲基化 (DNAme) 是生物医学研究和药物开发的强大方法。
当前的基因组学检测(例如 ChIP-seq、CUT&RUN)依赖于第二代短读长测序 (SRS),
短读长 (<500bp) 限制了 a) 分析单个 DNA 表观基因组特征一致性的能力
分子区域和 b) 映射到基因组的重复序列。
能够对单个分子的长读长(>10kb,甚至>100kb)进行测序,并准备好
通过克服 SRS 的重大限制,彻底改变基因组学。
LRS 允许使用单个分子上的特征之间的关系来解决混合内的异质性
这与临床应用高度相关,因为它可以分析特定细胞的特征。
无需进行单细胞分析(产生非常稀疏的数据)。
长区域的分析允许映射到基因组的挑战性和重复性,这在以前是
使用 SRS 进行“不可映射” 使用 LRS 开发的表观遗传图谱提供了前所未有的检测方法。
有机会破译混合群体中细胞的染色质景观,包括以前的细胞群体
然而,缺乏使用 LRS 测量表观遗传元件的分析方法。
EpiCypher 与约翰霍普金斯大学的 LRS 专家 Winston Timp 博士合作,
开发 CUTANA-LRS,这是一个一流的多组学检测平台,利用 LRS 同时分析
CUTANA-LRS 的创新在于开发了一种单次检测中的组蛋白 PTM 或 CAP 和 DNAme。
利用新型 DNA 甲基转移酶进行表观基因组图谱绘制的专有非破坏性方法
这种方法的灵感来自于相关的免疫束缚。
EpiCypher 正在开发和商业化的基于基因组作图的方法(例如 CUT&RUN)。
在 CUTANA-LRS 中,DNA 分子被标记并完整保存以用于 LRS,这将允许解析
数据类型内/之间的异质性,并将提供对以前无法映射的基因组区域的访问。
总之,这些进展将为更好地理解基因调控机制和
转录反应,包括在人类疾病的背景下,我们将优化 CUTANA-LRS。
并绘制区域多个目标,包括具有挑战性的区域,同时还对目标 2 中的原生 DNAme 进行分析。
将通过优化跨不同目标、输入、测序的稳健协议来严格开发 CUTANA-LRS
平台,并采用有针对性的丰富方法,在目标 3 中,我们将准备商业发布。
CUTANA-LRS,开发自动化协议,执行外部验证并演示临床应用。
这项工作将把 CUTANA-LRS 打造成一个革命性的平台,用于绘制和破译关系
在多种类型的染色质特征之间,可以访问以前“无法映射”的区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN MICHAEL BURG其他文献
JONATHAN MICHAEL BURG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN MICHAEL BURG', 18)}}的其他基金
Multiomic genomic mapping with long read sequencing
使用长读长测序进行多组基因组作图
- 批准号:
10685064 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
A molecular toolbox to accelerate drug development for histone lysine methylation regulators
加速组蛋白赖氨酸甲基化调节剂药物开发的分子工具箱
- 批准号:
10481092 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
A molecular toolbox to accelerate drug development for histone lysine methylation regulators
加速组蛋白赖氨酸甲基化调节剂药物开发的分子工具箱
- 批准号:
10615911 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
Quantitative mapping of combinatorial histone modifications
组合组蛋白修饰的定量作图
- 批准号:
10324501 - 财政年份:2019
- 资助金额:
$ 40.64万 - 项目类别:
相似国自然基金
热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
- 批准号:52306006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
工业自动化与创新的产业外溢:理论与实证
- 批准号:72302245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向典型sponge类哈希函数的比特分析驱动的中间相遇自动化攻击研究
- 批准号:62302250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
- 批准号:32301266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
码头自动化中的图论和组合优化问题
- 批准号:12331014
- 批准年份:2023
- 资助金额:194 万元
- 项目类别:重点项目
相似海外基金
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
- 批准号:
10713928 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Point-of-care system to assess the risk of trauma-induced acute respiratory distress syndrome
用于评估创伤引起的急性呼吸窘迫综合征风险的护理点系统
- 批准号:
10594793 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
High-resolution genomic mapping of ssDNA and associated proteins for Alzheimer's disease research
用于阿尔茨海默病研究的 ssDNA 和相关蛋白的高分辨率基因组图谱
- 批准号:
10382044 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
Acoustofluidic Pipette for Rapid Serodiagnosis of Candida Infection
用于念珠菌感染快速血清诊断的声流控移液器
- 批准号:
10388272 - 财政年份:2021
- 资助金额:
$ 40.64万 - 项目类别: