High-resolution genomic mapping of ssDNA and associated proteins for Alzheimer's disease research
用于阿尔茨海默病研究的 ssDNA 和相关蛋白的高分辨率基因组图谱
基本信息
- 批准号:10382044
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAntibodiesAutomationAutopsyBRCA1 geneBRCA2 geneBar CodesBenchmarkingBinding ProteinsBiological AssayBiological MarkersBrainCause of DeathCell NucleusCell modelCell physiologyCellsChIP-seqChromatinClinical ResearchComplexDNADNA BindingDNA Repair PathwayDNA mappingDevelopmentDisease ProgressionEpigenetic ProcessFailureGTP-Binding Protein alpha Subunits, GsGenetic TranscriptionGenome StabilityGenomic SegmentGenomic approachGenomicsGoalsHistonesHumanHybridsInterventionInvadedLesionMammalian CellMapsMeasuresMediatingMethodsMicrococcal NucleaseMolecular ConformationNerve DegenerationNeuronsNucleosomesPathogenesisPathway interactionsPerformancePharmaceutical PreparationsPharmacotherapyPhasePlayPost-Translational Protein ProcessingProcessPrognostic MarkerProteinsProtocols documentationRAD52 geneRNAResearchResearch PersonnelResolutionRoleSS DNA BPSamplingServicesSignal PathwaySignal TransductionSingle-Stranded DNASpecificityStretchingTechnologyYeastsbiomarker discoveryclinical applicationcostdisorder controldrug developmentdrug discoveryds-DNAepigenomicshomologous recombinationimprovedinnovationneuron lossnew therapeutic targetnovelnucleaserecombinational repairrepairedresearch and developmenttargeted biomarkertool
项目摘要
PROJECT SUMMARY
EpiCypher is collaborating with Dr. Jessica Tyler (an expert in aging, DNA repair and epigenetics), to
develop CUT&RUssNTM (Cleavage Under Targets and Release Using single-stranded Nuclease), a first-in-class
single-stranded DNA (ssDNA) mapping technology for research into the early pathogenesis of and possible
interventions for Alzheimer’s Disease (AD). The double-stranded conformation of genomic DNA (dsDNA) is
essential to maintain genome stability. ssDNA forms during many cellular processes, including transcription and
the processing of DNA lesions, and is rapidly sequestered by ssDNA binding proteins (SSBs) (e.g. RPA, RAD51
and BRCA1/BRCA2) to protect and facilitate any needed repair. AD is the most common form of
neurodegeneration, with early pathogenesis / neuronal cell death due in part to the accumulation of DNA damage
as a consequence of defective repair mechanisms (particularly homologous recombination [HR], which is heavily
reliant on ssDNA signaling pathways). Improved methods for detecting and mapping ssDNA and SSB-ssDNA
complexes that accompany DNA damage repair would greatly improve our understanding of how failure of these
pathways contributes to AD, and potentially reveal novel drug targets and biomarkers. However, tools to study
ssDNA-related signaling are lacking. The first innovation of our approach is the development of a novel
immunotethering approach, wherein: 1) an antibody to an ssDNA-associated feature (e.g. SSB) is used to locally
tether an ssDNA-specific nuclease to chromatin in permeabilized nuclei; 2) next, the nuclease is activated to
selectively cleave nearby ssDNA and not dsDNA; and 3) cleaved fragments are collected and sequenced to
yield a precise ssDNA target localization profile. The development of protein A/G (pAG) fused to an ssDNA-
specific nuclease is a key innovation, as it enables the definitive identification of ssDNA associated with any
localizing factor. A second innovation of our approach is the development of nucleosome spike-in controls
containing either ssDNA or dsDNA, which will be used: 1) to confirm nuclease specificity; and 2) to enable
quantitative comparisons in disease / control samples -/+ eventual drug treatment. The goals of this Phase I
project are to develop the CUT&RUssN workflow (Aim 1) and demonstrate its ability to map SSB-ssDNA
complexes in cells, thus enabling the novel study of ssDNA repair pathways in AD models (Aim 2). In Phase II,
we will expand the CUT&RUssN platform to additional chromatin features (e.g. SSBs or histone PTMs) and their
associated cellular mechanisms (e.g. transcription, R-loops, DNA replication). In addition, we will develop robust
protocols for widely studied AD models and human post-mortem brains, including low cell input applications and
assay automation to enable large-scale clinical studies. At the end of Phase II, we will launch a CUT&RUssN
beta-kit and assay services, which will be marketed to researchers, drug developers, and clinicians to accelerate
AD drug discovery.
项目概要
EpiCypher 正在与 Jessica Tyler 博士(衰老、DNA 修复和表观遗传学专家)合作,
开发 CUT&RUssNTM(目标下切割并使用单链核酸酶释放),这是一流的
单链 DNA (ssDNA) 作图技术用于研究早期发病机制和可能的
阿尔茨海默病 (AD) 的干预措施 基因组 DNA (dsDNA) 的双链构象是
在许多细胞过程中,包括转录和转录过程中,对于维持基因组稳定性至关重要。
DNA 损伤的处理,并被 ssDNA 结合蛋白 (SSB)(例如 RPA、RAD51)快速隔离
和 BRCA1/BRCA2)以保护和促进任何所需的修复,是最常见的 AD 形式。
神经变性,早期发病/神经元细胞死亡,部分原因是 DNA 损伤的积累
由于有缺陷的修复机制(特别是同源重组 [HR],这严重影响
改进的 ssDNA 和 SSB-ssDNA 检测和作图方法
伴随 DNA 损伤修复的复合物将极大地提高我们对这些缺陷如何失效的理解
然而,这些途径有助于 AD,并可能揭示新的药物靶点和生物标志物。
我们的方法的第一个创新是开发一种新颖的方法。
免疫束缚方法:1) 使用针对 ssDNA 相关特征(例如 SSB)的抗体来局部检测
将 ssDNA 特异性核酸酶连接至透化细胞核中的染色质;2) 接下来,激活核酸酶
选择性地切割附近的 ssDNA 而不是 dsDNA;以及 3) 收集切割的片段并进行测序
产生精确的 ssDNA 靶定位图谱 融合到 ssDNA 的蛋白 A/G (pAG) 的开发。
特异性核酸酶是一项关键创新,因为它能够明确识别与任何物质相关的单链DNA。
我们方法的第二个创新是核小体掺入控制的发展。
包含 ssDNA 或 dsDNA,将用于:1) 确认核酸酶特异性;2) 启用
疾病/对照样本的定量比较 -/+ 最终药物治疗 这一阶段的目标。
项目将开发 CUT&RUssN 工作流程(目标 1)并展示其绘制 SSB-ssDNA 的能力
细胞中的复合物,从而能够对 AD 模型中的 ssDNA 修复途径进行新的研究(目标 2)。
我们将把 CUT&RUssN 平台扩展到其他染色质特征(例如 SSB 或组蛋白 PTM)及其
此外,我们将开发强大的相关细胞机制(例如转录、R 环、DNA 复制)。
用于广泛研究的 AD 模型和人类死后大脑的协议,包括低细胞输入应用和
检测自动化以实现大规模临床研究 在第二阶段结束时,我们将启动 CUT&RUssN。
beta 试剂盒和检测服务,将向研究人员、药物开发商和忠实拥护者推销,以加速
AD药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael-Christopher Keogh其他文献
Michael-Christopher Keogh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael-Christopher Keogh', 18)}}的其他基金
Scalable and quantitative chromatin profiling from formalin-fixed paraffin-embedded samples
对福尔马林固定石蜡包埋样品进行可扩展和定量的染色质分析
- 批准号:
10696343 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10833236 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10481225 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10686135 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10758061 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10384022 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10622310 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10610898 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10401943 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10257054 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: