Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
基本信息
- 批准号:10665661
- 负责人:
- 金额:$ 43.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbateAblationAdultAffectAmacrine CellsAnatomyAnimalsAstrocytesAttentionAutopsyAwardBehavioralBiologyBlindnessBlood VesselsBlood capillariesBlood flowBrainCell HypoxiaCell physiologyCerebrospinal FluidCirculationClinical TreatmentComplexContrast SensitivityCustomDataDependenceDiseaseElderlyElectrophysiology (science)ElectroretinographyEnergy MetabolismEquilibriumExcisionEyeFunctional disorderFundingFutureGene ExpressionGenesGenetic TranscriptionGlaucomaHyperactivityHypoxiaImmunohistochemistryIndividualInfusion proceduresInjuryIntracranial HypertensionIntracranial PressureLaboratoriesLinkMechanicsMicrospheresModelingModificationMusNerve DegenerationNeurodegenerative DisordersOptic DiskOptic NerveOptical Coherence TomographyOxygenPathogenesisPatientsPatternPhenotypePhysiologic Intraocular PressurePhysiologicalPhysiologyPopulationPredispositionPublishingResearchRetinaRetinal DegenerationRetinal Ganglion CellsRisk FactorsRoleSeriesStructureTechniquesTestingTherapeutic StudiesTimeTissuesTractionTransgenic MiceTransmission Electron MicroscopyUnited StatesVariantVisionVisualcell injurycell typedecubitus ulcerexperimental studyhypoxia inducible factor 1in vivointerestmechanical forcemulti-electrode arraysnoveloptic nerve disorderpreferencepressurepreventresponsetheoriestooltranscriptomicstranslational diagnosticstranslational therapeutics
项目摘要
Project Summary
Glaucoma represents a number of complex diseases with a common endpoint of retinal ganglion cell (RGC)
and optic nerve degeneration. Two major models of glaucoma pathogenesis exist – the mechanical
hypothesis, which is based on the interaction of intraocular pressure (IOP) and intracranial pressure (ICP), and
the vascular hypothesis, which is based on factors that reduce blood flow to RGCs and the optic nerve.
Preliminary results from our laboratory suggest that experimental manipulations of mechanical factors such as
IOP and ICP in mice result in a range of microvascular and hypoxic abnormalities in the retina. These
abnormalities appear to differ not only according IOP and ICP level and exposure duration, but among retinal
cell types. In particular, we are interested in RGCs and amacrine cells (ACs), which are critical upstream
regulators of RGC function. In this renewal application, we propose to identify the earliest differential
responses of RGCs, ACs, and the retinal vasculature to IOP and ICP variation, and to determine the impact of
the hypoxic mechanisms that underlie these responses. There are three specific aims: (1) determine the
mechanism and differential susceptibilities of retinal capillary plexi to changes in IOP and/or ICP; 2) delineate
the differential hypoxic responses that occur in RGCs and ACs after changes in IOP, and test the hypothesis
that hypoxia in ACs causes physiologic dysfunction in RGCs; and 3) to test the hypothesis that HIF1, the
primary regulator of the hypoxic response, is required for ICP-induced RGC injury. Throughout these Aims, we
will employ novel experimental tools that enable us to elevate IOP and ICP to predictable levels for specific
durations, which allow us to assess the effects of both magnitude and duration of IOP/ICP change. We will
also use a new technique to isolate and culture adult RGCs and AC with high fidelity to probe the differential
responses of both cell types to hypoxia and preceding IOP injury. Used in conjunction with a series of in vivo
and post mortem electrophysiologic, behavioral, anatomic, and transcriptomic assessments of RGCs, ACs,
and the retinal vasculature in both wild type and transgenic mice, we will determine the relative contributions of
IOP and ICP change, and assess how alteration of hypoxia and the hypoxic response modifies these
contributions to impact RGC/AC dysfunction and survival. Our research will provide an important link between
mechanical and vascular hypotheses of glaucoma pathogenesis, potentially identifying a unified theory for
susceptibility to glaucoma that can guide future translational diagnostic and therapeutic studies.
项目摘要
青光眼代表了多种复杂疾病,具有残留神经节细胞(RGC)的常见终点
和视神经变性。有两个主要模型的青光眼发病机理存在 - 机械
假设基于眼内压(IOP)和颅内压(ICP)和
血管假设基于降低血液流向RGC和视神经的因素。
我们实验室的初步结果表明,机械因素的实验操作,例如
小鼠的IOP和ICP导致视网膜中的一系列微血管和低氧异常。这些
异常不仅根据IOP和ICP级别和暴露持续时间不同,而且在其余
细胞类型。特别是,我们对上游至关重要的RGC和无聚细胞(AC)感兴趣
RGC功能的调节剂。在此续签应用中,我们建议确定最早的差异
RGC,ACS和视网膜脉管系统对IOP和ICP变化的反应,并确定
这些反应的基础的低氧机制。有三个具体目标:(1)确定
视网膜毛细血管对IOP和/或ICP的变化的机理和差异敏感性; 2)描绘
IOP发生变化后,RGC和AC中发生的差异低氧反应,并检验假设
ACS缺氧引起RGC的生理功能障碍; 3)检验HIF1的假设
ICP诱导的RGC损伤需要低氧反应的主要调节剂。在这些目标中,我们
将采用新颖的实验工具,使我们能够将IOP和ICP提升到可预测的特定水平
持续时间,这使我们能够评估IOP/ICP变化的幅度和持续时间的影响。我们将
还使用一种新技术来隔离和培养成人RGC和AC具有高保真度以探测差异
两种细胞类型对缺氧和IOP损伤之前的反应。与一系列体内结合使用
以及Mortem电生理,行为,解剖和转录组的RGC,ACS,
以及野生型和转基因小鼠的视网膜脉管系统,我们将确定
IOP和ICP变化,并评估缺氧和缺氧反应的改变如何改变这些
影响RGC/AC功能障碍和生存的贡献。我们的研究将提供一个重要的联系
青光眼发病机理的机械和血管假设,有可能识别统一的理论
对青光眼的敏感性,可以指导未来的翻译诊断和治疗研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized culture of retinal ganglion cells and amacrine cells from adult mice.
- DOI:10.1371/journal.pone.0242426
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Park YH;Snook JD;Zhuang I;Shen G;Frankfort BJ
- 通讯作者:Frankfort BJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin J Frankfort其他文献
Benjamin J Frankfort的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin J Frankfort', 18)}}的其他基金
Acoustically targeted, high-resolution, site-specific, transretinal delivery of macromolecules
声学靶向、高分辨率、位点特异性、经视网膜输送大分子
- 批准号:
10706971 - 财政年份:2022
- 资助金额:
$ 43.87万 - 项目类别:
An in vitro/in vivo system for targeted retinal ganglion cell subtype manipulation
用于靶向视网膜神经节细胞亚型操作的体外/体内系统
- 批准号:
10546443 - 财政年份:2022
- 资助金额:
$ 43.87万 - 项目类别:
An in vitro/in vivo system for targeted retinal ganglion cell subtype manipulation
用于靶向视网膜神经节细胞亚型操作的体外/体内系统
- 批准号:
10354977 - 财政年份:2022
- 资助金额:
$ 43.87万 - 项目类别:
Acoustically targeted, high-resolution, site-specific, transretinal delivery of macromolecules
声学靶向、高分辨率、位点特异性、经视网膜输送大分子
- 批准号:
10373250 - 财政年份:2022
- 资助金额:
$ 43.87万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10224691 - 财政年份:2015
- 资助金额:
$ 43.87万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10475612 - 财政年份:2015
- 资助金额:
$ 43.87万 - 项目类别:
RETINAL GANGLION CELL AND AMACRINE CELL FUNCTION IN MOUSE MODELS OF ELEVATED INTR
INTR升高小鼠模型中视网膜神经节细胞和无精细胞的功能
- 批准号:
8300075 - 财政年份:2011
- 资助金额:
$ 43.87万 - 项目类别:
RETINAL GANGLION CELL AND AMACRINE CELL FUNCTION IN MOUSE MODELS OF ELEVATED INTR
INTR升高小鼠模型中视网膜神经节细胞和无精细胞的功能
- 批准号:
8511659 - 财政年份:2011
- 资助金额:
$ 43.87万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
- 批准号:62372469
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
- 批准号:82373219
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
- 批准号:82302332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Renal Denervation To Treat Hypertension: Mechanisms and Mediators
肾去神经术治疗高血压:机制和介质
- 批准号:
10226255 - 财政年份:2018
- 资助金额:
$ 43.87万 - 项目类别:
Esrp regulated programs of alternative splicing in skin development and function
Esrp 调控皮肤发育和功能中的选择性剪接程序
- 批准号:
9058997 - 财政年份:2015
- 资助金额:
$ 43.87万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10224691 - 财政年份:2015
- 资助金额:
$ 43.87万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10475612 - 财政年份:2015
- 资助金额:
$ 43.87万 - 项目类别: