Dopaminergic regulation of spatial learning
空间学习的多巴胺能调节
基本信息
- 批准号:10561863
- 负责人:
- 金额:$ 42.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimal ModelBackBehaviorBrainCalciumCellsCognitionComplexComputer ModelsCuesDefectDopamineDopaminergic CellDrosophila genusElectrophysiology (science)Environmental WindFeedbackGeneticHeadImageLearningLightLinkMapsMemoryMonitorMovementNerve DegenerationNeurodegenerative DisordersNeuronsOrganismPositioning AttributeRegulationRewardsRoleRotationSensorySignal TransductionSpeedSynapsesSynaptic plasticitySystemTestingTimeVisualWeightWhole-Cell Recordingsbasecell typeclinically relevantcognitive processconnectomedesigndiscountdopaminergic neuronexperimental studyflyin silicoin vivoin vivo calcium imagingneural networkneuromechanismresponsetheoriesvirtual reality environmentway finding
项目摘要
Summary
In neural networks that store information in their connection weights, there is a tradeoff between sensitivity
and stability. Connections must be plastic to incorporate new information, but if they are too plastic, stored
information can be corrupted. Therefore, it would be useful if learning rates in the brain were regulated by a
“when-to-learn” signal that varies with the current availability of new information. In reward learning,
dopamine is known to serve this function, by rapidly upregulate synaptic plasticity in response to reward
prediction errors. The overarching hypothesis of this proposal is that dopamine also provides a when-to-learn
signal for spatial learning. During spatial learning, new information is generally available when an organism is
moving through space. Thus, we hypothesize that spatial learning is modulated by dopamine release that is
specifically linked to active movements. This idea is attractive because it can provide an explanation for why so
many dopamine neurons are time-locked to movements. This proposal outlines three projects, all focusing on
spatial learning in the central complex, the primary center for spatial navigation in the Drosophila brain. In
each project, there is anatomical evidence from the Drosophila connectome that implies a role for dopamine
neurons. Moreover, in each project, there is already evidence that the dopamine neurons in question are active
when the fly is locomoting. This motivates our hypothesis that dopamine links movement to spatial learning.
Although these projects are linked conceptually, they each focus on a distinct dopamine cell type, and a distinct
form of spatial learning. First, we will determine how dopamine modulates learning about spatial position cues
in the head direction system. Second, we will investigate the hypothesis that dopamine modulates learning
about rotational velocity cues in the head direction system. Third, we will investigate the hypothesis that a
feedback circuit integrates information over time to discount the influence of environmental wind shifts on
head direction neurons. In all three projects, we use connectome analyses and computational modeling to
generate testable predictions about specific networks in the brain. Then, we test these predictions using in vivo
calcium imaging and/or electrophysiology as flies navigate in virtual reality environments. Our results should
shed light on the fundamental mechanisms underlying navigation behaviors in all complex species, including
ring attractor networks, Hebbian learning rules, and feedback loops. Broadly speaking, we think that dopamine
provides a control knob for modulating these mechanisms up or down. As such, we see dopaminergic neurons
as an entry point for an integrative understanding of network dynamics during complex cognitive processes.
概括
在将信息存储在其连接权重的神经网络中,灵敏度之间有一个折衷
和稳定性。连接必须是塑料才能包含新信息,但是如果它们太塑料,则存储
信息可能会损坏。因此,如果大脑中的学习率受到A的调节,这将是有用的
“何时学习”信号随当前可用性而变化。在奖励学习中,
众所周知,多巴胺可以通过快速上调突触可塑性来响应奖励来发挥这种功能
预测错误。该提议的总体假设是多巴胺还提供了一条何时学习
空间学习的信号。在空间学习期间,当生物体为
穿过太空。这,我们假设空间学习是由多巴胺释放调节的
专门链接到主动运动。这个想法很有吸引力,因为它可以说明为什么这样
许多多巴胺神经元被滞留到运动中。该提案概述了三个项目,都关注
中央综合体的空间学习是果蝇大脑空间导航的主要中心。在
每个项目,都有果蝇连接组的解剖学证据,这意味着多巴胺的作用
神经元。此外,在每个项目中,已经有证据表明有问题的多巴胺神经元活跃
当苍蝇处于机车状态时。这激发了我们的假设,即多巴胺将运动与空间学习联系起来。
尽管这些项目在概念上是链接的,但它们每个都集中在独特的多巴胺细胞类型上,并且是独特的
空间学习的形式。首先,我们将确定多巴胺如何调节有关空间位置提示的学习
在头方向系统中。其次,我们将研究多巴胺调节学习的假设
关于旋转速度提示在头方向系统中。第三,我们将研究以下假设
反馈电路会随着时间的推移整合信息,以降低环境风的影响
头部方向神经元。在所有三个项目中,我们都将Connectome分析和计算建模用于
生成有关大脑特定网络的可测试预测。然后,我们使用体内测试这些预测
钙成像和/或电生理学随着虚拟现实环境导航。我们的结果应该
阐明了所有复杂物种中导航行为的基本机制,包括
戒指吸引者网络,HEBBIAN学习规则和反馈循环。从广义上讲,我们认为多巴胺
提供一个控制旋钮,以调节这些机制向上或向下调节。因此,我们看到多巴胺能神经元
作为对复杂认知过程中网络动态的集成理解的入口点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Wilson其他文献
Rachel Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Wilson', 18)}}的其他基金
Mechanosensory feature extraction for directed motor control
用于定向运动控制的机械感觉特征提取
- 批准号:
10202742 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
Project 4: Neural Basis of Behavioral Sequences
项目 4:行为序列的神经基础
- 批准号:
10202764 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8039809 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7771723 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8617832 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7084882 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8415472 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7367079 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8220715 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Exercise-Induced Recovery of Intervertebral Disc Health
运动引起的椎间盘健康恢复
- 批准号:
10745782 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Smoking-related Differences in Baroreflex Sensitivity and Fear Inhibition in Adults Who Do and Do Not Smoke Cigarettes
吸烟和不吸烟的成年人压力感受反射敏感性和恐惧抑制的与吸烟相关的差异
- 批准号:
10607239 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Developing Radiocaine NaV imaging as a response monitoring biomarker for chronic pain
开发放射性卡因 NaV 成像作为慢性疼痛的反应监测生物标志物
- 批准号:
10794862 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Two-for-one Stroke Thrombectomy: A novel Dual DAC to enhance navigability, lumen size, aspiration efficiency, and persistent flow arrest in mechanical thrombectomy
二合一中风血栓切除术:一种新型双 DAC,可增强机械血栓切除术中的导航性、管腔尺寸、抽吸效率和持续流动停止
- 批准号:
10698538 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别: