Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
基本信息
- 批准号:8617832
- 负责人:
- 金额:$ 34.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2016-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelArchitectureAxonBrainCalciumCellsChemicalsDependencyDiagnosisDiseaseDrosophila genusGeneticGoalsHomologous GeneHumanImageInterneuronsLaboratoriesLateralLinkLobeMapsMeasurementMeasuresMediatingMedicalModalityModelingMonitorMorphologyNeurodegenerative DisordersNeuronsNoiseNoseOdorant ReceptorsOdorsOlfactory Receptor NeuronsPatientsPhysiologicalPlayPopulationPreparationPresynaptic TerminalsProblem SolvingProcessRecruitment ActivityRelative (related person)RoleSensorySensory ProcessShapesSignal TransductionSmell PerceptionSourceStagingStructureSynapsesSystemSystems BiologyTechniquesTestingTimeUrsidae FamilyVertebratesWhole-Cell Recordingsbasebiodefensedesigngenetic manipulationin vivoinsightneural circuitolfactory bulbolfactory disorderoptogeneticspostsynapticpresynapticpublic health relevanceresearch studyresponsesensorsynaptic functiontool
项目摘要
DESCRIPTION (provided by applicant): The early stages of sensory processing pose similar problems for various sensory modalities-for example, controlling gain and minimizing noise. It is not clear how the computations that solve these problems are implemented at the level of cells and synapses. The early olfactory system is a useful preparation for investigating these issues because of its compartmental architecture. All the olfactory receptor neurons (ORNs) that express the same odorant receptor converge on the same compartment (glomerulus), and glomeruli are linked by both inhibitory and excitatory lateral connections. This architecture raises specific questions about the in vivo function of synaptic interactions in this circuit. Specifically, why do so many ORNs converge on each glomerulus? How do postsynaptic neurons integrate converging ORN spikes in the time domain? What happens when the connections between glomeruli are abolished? Do different glomerular processing channels perform different computations on their feedforward inputs? Why is there such diversity among local neurons (LNs)? Why would it be useful to have both excitatory and inhibitory LNs? These questions will be addressed using targeted genetic manipulations, in vivo whole-cell recordings, and calcium imaging in the Drosophila antennal lobe. The Drosophila antennal lobe is a good model for addressing these questions because it bears a strong similarity to its vertebrate homolog, the olfactory bulb. Moreover, it enables experiments that are currently not possible in other preparations. Specifically, it is possible to genetically manipulate specific synapses, validate the cellular correlates of these perturbations using in vivo intracellular electrophysiological measurements, and examine the functional consequences of these perturbations for the intact circuit. In these studies, genetic tools will be used (1) to manipulate ORN convergence and coherence, (2) to selectively abolish lateral excitation, lateral presynaptic inhibition, and lateral postsynaptic inhibition, (3) to stimulate specific LN populations, and (4) to monitor and manipulate the spatial spread of lateral inhibition. Most of these manipulations were made possible by recent discoveries about the biology of this system. All the techniques in these studies are routinely used in the laboratory, and thus their feasibility is proven. The results of these studies should illuminate general principles underlying synaptic integration in sensory circuits in vivo. Namely, these studies should help clarify how neural circuits can maximize their signal-to-noise ratio, how different circuit modules might perform specialized computations, why local interneurons are so diverse, and why lateral excitation and lateral inhibition often co-exist. More specifically, these studies should clarify the synaptic basis of olfactory processing, in vertebrates as well as in simpler model organisms. Understanding how the brain processes odors should aid the design of so-called "artificial noses", sensors designed to analyze organic volatiles which have important applications in medical diagnosis.
描述(由申请人提供):感觉处理的早期阶段对各种感觉方式提出了类似的问题,例如控制增益和最小化噪声。目前尚不清楚解决这些问题的计算是如何在细胞和突触层面实现的。早期的嗅觉系统因其区室结构而成为研究这些问题的有用准备。所有表达相同气味受体的嗅觉受体神经元(ORN)聚集在同一个区室(肾小球)上,肾小球通过抑制性和兴奋性侧向连接相连。这种结构提出了有关该电路中突触相互作用的体内功能的具体问题。具体来说,为什么每个肾小球上会汇聚如此多的 ORN?突触后神经元如何在时域中整合会聚的 ORN 尖峰?当肾小球之间的连接被取消时会发生什么?不同的肾小球处理通道是否对其前馈输入执行不同的计算?为什么局部神经元(LN)之间存在如此多的多样性?为什么同时具有兴奋性和抑制性 LN 会有用?这些问题将通过有针对性的基因操作、体内全细胞记录和果蝇触角叶的钙成像来解决。果蝇触角叶是解决这些问题的一个很好的模型,因为它与其脊椎动物同源物嗅球具有很强的相似性。此外,它使得目前其他制剂无法进行的实验成为可能。具体来说,可以对特定突触进行基因操作,使用体内细胞内电生理测量来验证这些扰动的细胞相关性,并检查这些扰动对完整电路的功能影响。在这些研究中,遗传工具将用于 (1) 操纵 ORN 收敛和一致性,(2) 选择性地消除横向兴奋、横向突触前抑制和横向突触后抑制,(3) 刺激特定的 LN 群体,以及 (4)监测和操纵侧抑制的空间扩散。大多数这些操作都是由于最近对该系统生物学的发现而成为可能的。这些研究中的所有技术都在实验室中常规使用,因此其可行性得到了证明。这些研究的结果应该阐明体内感觉回路中突触整合的一般原理。 也就是说,这些研究应该有助于阐明神经回路如何最大化其信噪比,不同的电路模块如何执行专门的计算,为什么局部中间神经元如此多样化,以及为什么横向兴奋和横向抑制经常共存。更具体地说,这些研究应该阐明脊椎动物以及更简单的模型生物中嗅觉处理的突触基础。了解大脑如何处理气味应该有助于设计所谓的“人造鼻子”,这种传感器旨在分析有机挥发物,在医学诊断中具有重要应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Wilson其他文献
Rachel Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Wilson', 18)}}的其他基金
Mechanosensory feature extraction for directed motor control
用于定向运动控制的机械感觉特征提取
- 批准号:
10202742 - 财政年份:2017
- 资助金额:
$ 34.96万 - 项目类别:
Project 4: Neural Basis of Behavioral Sequences
项目 4:行为序列的神经基础
- 批准号:
10202764 - 财政年份:2017
- 资助金额:
$ 34.96万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8039809 - 财政年份:2006
- 资助金额:
$ 34.96万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7771723 - 财政年份:2006
- 资助金额:
$ 34.96万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7084882 - 财政年份:2006
- 资助金额:
$ 34.96万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8415472 - 财政年份:2006
- 资助金额:
$ 34.96万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7367079 - 财政年份:2006
- 资助金额:
$ 34.96万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8220715 - 财政年份:2006
- 资助金额:
$ 34.96万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 34.96万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 34.96万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 34.96万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 34.96万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 34.96万 - 项目类别: