Neural activity-dependent modulation of cortical microvascular restoration
皮质微血管修复的神经活动依赖性调节
基本信息
- 批准号:10544548
- 负责人:
- 金额:$ 54.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAnimalsArteriesAstrocytesBlood VesselsBlood capillariesBlood flowBrainBrain InjuriesCell physiologyCellsCentral Nervous SystemCerebrovascular CirculationCerebrumCoupledDataDextransElementsEndothelial CellsEndotheliumFluorescent DyesGenerationsGeneticGrowthHeadHistologicImageImaging technologyInjuryLabelLongitudinal StudiesMagnetic Resonance ImagingMeasurementMetabolismMethodsMicroscopeModelingMolecularMonitorMotor CortexMovementMusNeurological outcomeNeuronsOutcome AssessmentPaintPatternPerfusionPericytesPhasePhysiological ProcessesPlasmaPlayProcessProliferatingRecoveryReporterResearchResolutionRoleRotarod Performance TestSignal TransductionSiteSpeedStainsSynapsesTestingTherapeutic InterventionTimeTissue PreservationTissuesVascular Endothelial Growth FactorsVascular remodelingVascularizationVeinsVisualizationbehavior testbeta cateninblood perfusioncell typecerebral microvasculatureclinical translationendothelial stem cellexcitatory neuronfootimprovedin vivoin vivo imaginginhibitory neuroninjury and repairinnovationlight weightmigrationminiaturizemotor function recoverymouse modelmultidisciplinaryneovascularizationnervous system developmentneuralneural circuitneural stimulationnoveloptogeneticsquantitative imagingrecruitrepairedresponserestorationserial imagingtemporal measurementtherapeutically effectivetwo-photonvasculogenesisvenule
项目摘要
Project Summary / Abstract
Blood vessels, from arteries to capillaries to venules and then to veins, contribute to fundamental physiological
processes. However, the vascular responses for repair and restoration of microvascular networks after cortical
brain injury are poorly understood, including how neuronal activity influences these processes. A major barrier
to research is the poor accessibility of micro-vessels in the brain and associated technical difficulties. To
overcome this barrier, we propose to use innovative imaging technologies that we have co-developed to
investigate micro-vessel formation and re-growth in response to focal cortical injury. We have used light-weight
head-mounted, miniaturized microscopes (“miniscopes”) to dynamically image the vasculature and associated
cells with high spatial and temporal resolution. We will use cortical injury models by applying a controlled
moderate impact to the mouse motor cortex. Combining in vivo longitudinal miniscope and 2-photon imaging,
histological “vessel painting” and perfusion-weighted magnetic resonance imaging (PWI MRI), we aim to achieve
a deeper understanding of microvascular restoration following cortical injury. We will apply targeted optogenetic
stimulation of excitatory neurons and specific inhibitory neurons to modulate microvascular repair in early and
late phases of vessel re-growth. Our guiding hypothesis is that microvascular restoration and remodeling after
cortical injury are regulated by vascularization sequences and cellular processes that are similarly observed in
normal vasculogenesis during central nervous system development. In Aim 1, we will identify the time course
and spatial pattern of vascular regrowth, and blood flow dynamics after focal cortical injury. Vascular networks
and blood flow are visualized with fluorescent-labeled dextrans for in vivo imaging for quantitative
measurements. In Aim 2, we will determine the role of endothelial cells in new blood vessel sprouting and the
establishment of functional microvascular by imaging Tie2-Cre reporter mice during the first two weeks post-
injury. We will also examine the influence of astrocytes and pericytes in vascular re-growth. In Aim 3, we will
test the hypothesis that optogenetic stimulation of specific neuron types in a temporally controlled manner
facilitates and enhances microvasculature restoration for post-injury repair. We will also examine if and how
targeted modulation of neural activities modulate Wnt/ß-catenin and VEGF signaling mechanisms that are critical
for micro-vessel re-growth. Behavioral testing will assess the outcomes of the optogenetic treatment. We have
strong preliminary data that supports the premise for the proposed research for all aims. The proposed research
will advance our understanding of the cellular and molecular mechanisms underlying cortical microvascular
restoration and how neural stimulation enhances vascular network formation.
项目摘要 /摘要
血管从动脉到毛细血管再到静脉,再到静脉
过程。但是,皮质后修复和修复微血管网络的血管反应
脑损伤知之甚少,包括神经元活动如何影响这些过程。主要障碍
研究是大脑中微容器的可及性和相关技术困难的可及性。到
克服这一障碍,我们建议使用我们共同开发的创新成像技术
对局灶性皮质损伤的响应研究微毒剂形成和重生。我们使用了轻量级
头部安装的微型显微镜(“ Miniscopes”),以动态图像脉管系统和相关图像
具有高空间和临时分辨率的细胞。我们将通过应用受控的方式使用皮质损伤模型
对小鼠运动皮层的中等影响。结合体内纵向miniscope和2光子成像,
组织学“容器绘画”和灌注加权磁共振成像(PWI MRI),我们旨在实现
皮质损伤后对微血管修复的深入了解。我们将应用目标光遗传学
刺激兴奋神经元和特定的抑制性神经元,以调节早期的微血管修复和
船只重新生长的最新阶段。我们的指导假设是在
皮质损伤受血管形成序列和细胞过程调节,在
中枢神经系统发育过程中的正常血管生成。在AIM 1中,我们将确定时间课程
血管改革的空间模式以及局灶性皮质损伤后的血流动力学。血管网络
用荧光标记的右旋体可视化血流,用于体内成像以进行定量
测量。在AIM 2中,我们将确定内皮细胞在新血管发芽和
通过成像TIE2-CRE记者小鼠在前两周内通过成像TIE2-CRE Reporter小鼠建立功能性微血管
受伤。我们还将检查星形胶质细胞和周细胞在血管重长中的影响。在AIM 3中,我们将
检验以下假设,即以临时控制的方式对特定神经元类型的光遗传学刺激
促进并增强微脉管恢复,以进行伤害后修复。我们还将检查是否以及如何
神经活动的有针对性调节调节Wnt/ß-catenin和VEGF信号传导机制至关重要
用于微船长重新增长。行为测试将评估光遗传处理的结果。我们有
强大的初步数据支持所有目标的拟议研究前提。拟议的研究
将促进我们对皮质微血管下的细胞和分子机制的理解
恢复以及神经刺激如何增强血管网络形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDRE OBENAUS其他文献
ANDRE OBENAUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDRE OBENAUS', 18)}}的其他基金
Neural activity-dependent modulation of cortical microvascular restoration
皮质微血管修复的神经活动依赖性调节
- 批准号:
10370395 - 财政年份:2021
- 资助金额:
$ 54.76万 - 项目类别:
Neural activity-dependent modulation of cortical microvascular restoration
皮质微血管修复的神经活动依赖性调节
- 批准号:
10181904 - 财政年份:2021
- 资助金额:
$ 54.76万 - 项目类别:
相似国自然基金
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
多肽纳米纤维水凝胶对灵长类动物急性脊髓损伤后脱髓鞘和再髓鞘化的保护作用及其机制
- 批准号:81972064
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
氨转运蛋白Rhcg在急性肝衰竭动物氨致脑水肿发生中的作用机制
- 批准号:
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
建立脑内急性基因编辑的孤独症非人灵长类动物模型
- 批准号:
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:专项基金项目
呼气末正压与动态/静态机械能比值的相关性研究:针对不同肺损伤模型的动物实验及初步临床验证
- 批准号:81871582
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10635151 - 财政年份:2023
- 资助金额:
$ 54.76万 - 项目类别:
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10627579 - 财政年份:2023
- 资助金额:
$ 54.76万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 54.76万 - 项目类别:
Investigating the Role of Heme in Acute and Chronic Sickle Cell Disease Pain
研究血红素在急性和慢性镰状细胞病疼痛中的作用
- 批准号:
10750175 - 财政年份:2023
- 资助金额:
$ 54.76万 - 项目类别:
FGF13 Control of Hippocampal Excitability in Cocaine Contextual Memory
FGF13 对可卡因情境记忆中海马兴奋性的控制
- 批准号:
10595518 - 财政年份:2022
- 资助金额:
$ 54.76万 - 项目类别: