RR&D Research Career Scientist Award Application

RR

基本信息

项目摘要

Overall goals: My laboratory is dedicated to understanding and mitigating the neuroinflammatory response to implanted devices within the central nervous system. Such devices range from ventricular shunts to various types of stimulating and recording electrodes. Neural devices range in material type, size, architecture, function, and placement. Regardless of any of these variables, the neuroinflammatory response to the implant plays a significant role on the integrity of the healthy tissue and the longevity of device performance. A progressive decline in recordings quality after implantation has been known for over 40 years. Unfortunately, recording instability is still a commonly documented problem. A major portion of my work has focused on studying various aspects of intracortical microelectrode performance, and pursuing both materials-based and therapeutic-based methods to mitigate the inflammatory-mediated intracortical microelectrode failure mechanisms. Areas include: 1) Role of tissue/device mechanical mismatch on microelectrode failure. I have developed biologically- inspired, mechanically-dynamic intracortical microelectrodes based on their polymer nanocomposite material. Enabled by the novel material system, I am able to independently examine and manipulate device modulus, geometry, and drug-eluting capabilities. Over the past ten years, my team has successfully demonstrated that mechanically-dynamic polymer-based intracortical microelectrodes are stiff enough to be inserted into the brain, become compliant to reduce micro-motion and inhibit late-stage neuroinflammatory responses, and can be fabricated into functional intracortical microelectrodes capable of recording from neural structures in live animals. We have also recently demonstrated that mechanically-dynamic polymer-based intracortical microelectrodes can be utilized to deliver anti-inflammatory therapeutics to further mitigate implant-associated inflammation. As part of our ongoing Department of Defense CDMRP award, we are collaboratively working to characterize the relationship between microelectrode-induced tissue strain and recording performance. 2) Role of oxidative stress on microelectrode failure. Oxidative pathways have been implicated in both neurodegeneration and corrosive damage to both the metallic and insulating materials of current intracortical microelectrode technologies. Thus, approaches to mitigate or attenuate the deleterious effects of oxidative inflammatory products are of significant importance. We have demonstrated that several antioxidants can be delivered systemically or locally to temporally mitigate neuronal damage and loss, and that bioactive coatings with mimetic anti-oxidative enzymes can prolong neuroprotection. Further, unpublished results have also established a correlation between osmotically delivered antioxidant therapy within the brain and improved intracortical microelectrode recording performance. Over the next four years, my new VA Merit Review will explore the connection between surface-immobilize biomimetic antioxidative therapies and intracortical microelectrode recording performance. 3) Role of specific immunity pathways microelectrode failure. Few direct connections have been demonstrated between the neuroinflammatory response to intracortical microelectrodes and device performance. We have identified a possible connection between each of these studies to be in large part due to innate immunity-specific toll-like receptor pathways of resident microglia or infiltrating macrophages. Further, we have established that inhibiting the innate immunity co-receptor cluster of differentiation 14 on myeloid cells and not resident microglia reduced blood-brain barrier permeability and increased neuroprotection and intracortical microelectrode recording performance. My laboratory has identified a precise pathway that facilitates stability of the microelectrode-tissue interface, which may lead to new treatment regimens to enable long-term performance. Ongoing work is supported by the NIH, with interest from private corporate sources.
总体目标:我的实验室致力于了解和减轻神经炎症反应 中枢神经系统内的植入装置。此类装置的范围从心室分流器到各种 刺激和记录电极的类型。神经设备的材料类型、尺寸、架构、功能、 和安置。无论这些变量如何,对植入物的神经炎症反应都起着重要作用 对健康组织的完整性和设备性能的寿命具有重要作用。一个进步的 40 多年来,人们都知道植入后录音质量会下降。不幸的是,录音 不稳定仍然是一个普遍记录的问题。我工作的主要部分集中在研究各种 皮质内微电极性能方面,并追求基于材料和基于治疗的 减轻炎症介导的皮质内微电极失效机制的方法。领域包括: 1)组织/装置机械失配对微电极故障的作用。我已经在生物学上发展了- 基于聚合物纳米复合材料的受启发的机械动态皮质内微电极。 在新颖的材料系统的支持下,我能够独立检查和操纵设备模量, 几何形状和药物洗脱能力。在过去的十年里,我的团队成功地证明了: 基于机械动力聚合物的皮质内微电极足够坚硬,可以插入大脑, 变得顺从以减少微运动并抑制晚期神经炎症反应,并且可以 制成功能性皮质内微电极,能够记录活体动物的神经结构。 我们最近还证明了基于机械动态聚合物的皮质内微电极 可用于提供抗炎治疗,以进一步减轻与植入物相关的炎症。作为 作为我们正在进行的国防部 CDMRP 奖励的一部分,我们正在合作努力描述 微电极引起的组织应变与记录性能之间的关系。 2)氧化应激对微电极失效的作用。氧化途径与这两种情况有关 当前皮质内金属和绝缘材料的神经退行性变和腐蚀损伤 微电极技术。因此,减轻或减弱氧化的有害影响的方法 炎症产物具有重要意义。我们已经证明,几种抗氧化剂可以 全身或局部递送以暂时减轻神经元损伤和损失,并且生物活性涂层 具有模拟抗氧化酶可以延长神经保护作用。此外,未发表的结果还 建立了大脑内渗透性抗氧化疗法与改善的抗氧化疗法之间的相关性 皮质内微电极记录性能。在接下来的四年里,我的新退伍军人事务部绩效审查将 探索表面固定仿生抗氧化疗法与皮质内疗法之间的联系 微电极记录性能。 3)特异性免疫途径微电极失效的作用。直接联系很少 证明了皮质内微电极和装置的神经炎症反应之间的关系 表现。我们已经确定了每项研究之间可能存在的联系,这在很大程度上是由于 常驻小胶质细胞或浸润巨噬细胞的先天免疫特异性 Toll 样受体途径。此外,我们 已经确定抑制骨髓细胞上分化 14 的先天免疫辅助受体簇 非驻留小胶质细胞降低了血脑屏障的通透性并增加了神经保护和皮质内 微电极记录性能。我的实验室已经确定了一条促进稳定性的精确途径 微电极-组织界面,这可能会导致新的治疗方案以实现长期性能。 正在进行的工作得到了美国国立卫生研究院的支持,私营企业也对此感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey R Capadona其他文献

Jeffrey R Capadona的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金

Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10418649
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10642761
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10217285
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10060750
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10311087
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
  • 批准号:
    10599364
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
  • 批准号:
    10356848
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
  • 批准号:
    10561933
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
  • 批准号:
    10840055
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Senior Research Career Scientist
高级研究职业科学家
  • 批准号:
    10749218
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

干旱内陆河高含沙河床对季节性河流入渗的影响机制
  • 批准号:
    52379031
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
  • 批准号:
    32371610
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
  • 批准号:
    72373005
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
  • 批准号:
    82360655
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
  • 批准号:
    42301019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
  • 批准号:
    10643624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
gd IELs in chronic ileitis
慢性回肠炎的 gd IEL
  • 批准号:
    10607078
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Healthcare use among older adults with dementia after large-scale disasters
大规模灾难后患有痴呆症的老年人的医疗保健使用情况
  • 批准号:
    10591812
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Leveraging the dyad: mechanisms of an intervention for psychological distress in chronic lung disease
利用二元关系:慢性肺病心理困扰的干预机制
  • 批准号:
    10629648
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Evaluating the Unmet Needs of Older Adults to Promote Functional Recovery after a Critical Illness (LANTERN)
评估老年人未满足的需求以促进危重疾病后的功能恢复(LANTERN)
  • 批准号:
    10735299
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了