Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
基本信息
- 批准号:10642761
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAmputationAnteriorAnti-Inflammatory AgentsAntibioticsBehaviorBehavioralBilateralBiologicalBloodBlood Chemical AnalysisBlood PlateletsBlood VesselsBody WeightBrainCentral Nervous SystemCerebrospinal fluid shunts procedureChronicCicatrixDataDevicesDexamethasoneDoseDrug Delivery SystemsDrug TargetingDrug usageElectrodesEngineeringEuthanasiaFDA approvedFailureFrequenciesFutureGenderGene ExpressionGlucocorticoidsGoalsHealthHemorrhageHemostatic functionHigh Pressure Liquid ChromatographyHumanImplantImplanted ElectrodesInflammationInflammatory ResponseKidneyKineticsLeftLimb ProsthesisLiverLocal TherapyLongevityLungMeasurementMeasuresMechanicsMediatingMedical DeviceMedical ResearchMetabolic Clearance RateMethodsMicroelectrodesMotorMotor CortexNerve DegenerationNeuronsOrganOutcomePainParalysedParkinson DiseasePatientsPatternPerformancePeripheralPharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPrevalenceProsthesisQuality of lifeRandomizedRattusRehabilitation therapyResearchResearch PersonnelRodentRodent ModelSafetySalineSideSignal TransductionSiliconSiteSpinal cord injurySpleenSteroidsStrokeSystemTechnologyTherapeutic AgentsThinkingTimeTissuesTouch sensationTraumaTreatment EfficacyTremorVeteransWith lateralityanimal imagingbehavior testblood-brain barrier permeabilizationbrain computer interfacechronic paincohortcommercializationdelivery vehicledosagefluorescence imagingfunctional restorationimaging modalityimplantable deviceimplantationimprovedlimb movementmedical implantnanolabelnanoparticleneuralneuroinflammationneuromuscularpharmacokinetics and pharmacodynamicspreventresponsesafety assessmentsensorside effecttissue processingtreatment comparison
项目摘要
The overall goal of this proposal is to improve the chronic performance of intracortical recording microelectrodes
using a targeted drug-delivery approach. Microelectrode-based devices have the potential to resolve many
challenges in rehabilitation for Veterans with paralysis and/or amputation. Notably, brain-computer interface
(BCI) endeavors within the VA have provided patients the ability to control electromechanical or neuromuscular
prostheses using ‘thoughts’ or signals from their motor cortex. BCIs are further being extended by researchers
at the VA to restore the sensation of touch by integrating sensors and stimulators into mechanical prosthetic
limbs.3-5 While the promises of intracortical microelectrode interfaces are significant, the devices suffer from a
key challenge: long term stability and functionality. The failure modes are multifaceted, but a substantial
component is attributed to vascular trauma from implantation that initiates bleeding and a prolonged biological
response, including inflammation which leads to significant reduction in healthy neurons near recording contacts.
Several FDA-approved drugs have demonstrated the ability to reduce the biological inflammatory response and
augment microelectrode recording performance in rodents. However, due to limitations of pharmacokinetics and
pharmacodynamics, most of the agents reach the implant site in relatively low concentrations, limiting the
magnitude of effect and/or requiring frequent dosages to attain meaningful results. Additionally, in the case of
steroids and antibiotics, long-term systemic administration is contraindicated due to side effects on peripheral
systems. Leveraging a platelet-inspired drug delivery platform currently undergoing commercialization, we have
engineered a method for targeting drugs specifically to the microelectrode implantation site. Localizing the drug
to the microelectrode site will reduce the systemically administered dose, while minimizing the payload delivered
to peripheral organs, e.g., liver and kidneys. During this study, we will focus on delivering the drug,
dexamethasone (Dex), which is a potent glucocorticoid steroidal anti-inflammatory drug. While we have
demonstrated the ability to target the microelectrode with drug-loaded nanoparticles, further optimization of
dosing with Dex and characterization of chronic recordings are needed. Our objective is to establish a safe and
effective drug-delivery platform for localized therapy to improve chronic BCI performance. We hypothesize that
administration of targeted dexamethasone-loaded nanoparticles (Dex-NPs) will prevent chronic scarring and
neurodegeneration associated with improved chronic recording quality of intracortical microelectrodes and
associated motor-behavioral function. If proven effective, the platform may be further developed and
characterized to release other pharmaceutical payloads that have unique or complementary effects on the
system. Additionally since the delivery platform is being commercialized, there is increased potential for scaling
the technology to human application.
该提案的总体目标是改善皮质内记录微电极的慢性表现
采用靶向药物交付方法。基于微电极的设备有可能解决许多
瘫痪和/或截肢的退伍军人康复方面的挑战。值得注意的是,大脑计算机界面
(BCI)VA内的努力为患者提供了控制机电或神经肌肉的能力
假体使用“思想”或电动机皮质信号。研究人员进一步扩展了BCI
在VA处,通过将传感器和刺激器集成到机械假肢中来恢复触摸感
四肢3-5虽然物质内微电极接口的承诺很重要,但设备遭受了
主要挑战:长期稳定性和功能。故障模式是多方面的,但很重要
组成部分归因于植入引发出血和长时间生物学的血管创伤
反应,包括炎症,导致记录接触附近的健康神经元显着降低。
几种FDA批准的药物已经证明了降低生物性炎症反应的能力和
增强啮齿动物中的微电极记录性能。但是,由于药代动力学和
药效学,大多数药物以相对较低的浓度到达植入物位置,从而限制了
效果的大小和/或需要剂量经常获得有意义的结果。此外,在
类固醇和抗生素,由于对周围的副作用而禁忌长期全身部给药
系统。利用当前正在商业化的血小板风格的药物输送平台,我们有
设计了一种专门针对微电极植入部位的药物的方法。定位该药物
到微电极站点将减少系统施用的剂量,同时最大程度地减少交付的有效载荷
到外围器官,例如肝脏和肾脏。在这项研究中,我们将专注于提供药物,
地塞米松(Dex),这是一种潜在的糖皮质固醇抗炎药。而我们有
证明了用加载药物的纳米颗粒靶向微电极的能力,进一步优化了
需要用DEX和慢性记录的表征进行剂量。我们的目标是建立安全和
有效的药物分娩平台,用于局部治疗,以改善慢性BCI性能。我们假设这一点
给予靶向地塞米松的纳米颗粒(DEX-NP)将防止慢性疤痕和
神经变性与改善了皮质内微电极的慢性记录质量有关
相关的运动行为功能。如果证明有效,该平台可能会进一步开发,并且
特征是释放其他药物有效载荷,这些有效载荷对
系统。此外,由于交付平台正在商业化,因此扩展潜力增加
人类应用的技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of a Temporary Peripheral Nerve Stimulation Electrode Utilizing a Bioabsorbable Suture Substrate.
- DOI:10.1109/embc48229.2022.9871604
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey R Capadona其他文献
Jeffrey R Capadona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10418649 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10217285 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
- 批准号:
10599364 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10356848 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
- 批准号:
10561933 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10840055 - 财政年份:2019
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Nitric oxide-releasing glycosaminoglycans for treating complex wounds
释放一氧化氮的糖胺聚糖用于治疗复杂伤口
- 批准号:
10584269 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SymHeal: A novel therapy for treating non-healing diabetic ulcers
SymHeal:一种治疗不愈合糖尿病溃疡的新疗法
- 批准号:
10602837 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals with Transtibial Amputation Using Dynamic Stereo X-Ray
使用动态立体 X 射线量化小腿截肢者残肢窝接口中的骨骼和皮肤运动
- 批准号:
10597108 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of photoacoustic tomography for non-invasive, label-free imaging of tissue perfusion in chronic wounds
开发用于慢性伤口组织灌注非侵入性、无标记成像的光声断层扫描技术
- 批准号:
10209788 - 财政年份:2021
- 资助金额:
-- - 项目类别: