Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
基本信息
- 批准号:10642761
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAmputationAnteriorAnti-Inflammatory AgentsAntibioticsBehaviorBehavioralBilateralBiologicalBloodBlood Chemical AnalysisBlood PlateletsBlood VesselsBody WeightBrainCentral Nervous SystemCerebrospinal fluid shunts procedureChronicCicatrixDataDevicesDexamethasoneDoseDrug Delivery SystemsDrug TargetingDrug usageElectrodesEngineeringEuthanasiaFDA approvedFailureFrequenciesFutureGenderGene ExpressionGlucocorticoidsGoalsHealthHemorrhageHemostatic functionHigh Pressure Liquid ChromatographyHumanImplantImplanted ElectrodesInflammationInflammatory ResponseKidneyKineticsLeftLimb ProsthesisLiverLocal TherapyLongevityLungMeasurementMeasuresMechanicsMediatingMedical DeviceMedical ResearchMetabolic Clearance RateMethodsMicroelectrodesMotorMotor CortexNerve DegenerationNeuronsOrganOutcomePainParalysedParkinson DiseasePatientsPatternPerformancePeripheralPharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPrevalenceProsthesisQuality of lifeRandomizedRattusRehabilitation therapyResearchResearch PersonnelRodentRodent ModelSafetySalineSideSignal TransductionSiliconSiteSpinal cord injurySpleenSteroidsStrokeSystemTechnologyTherapeutic AgentsThinkingTimeTissuesTouch sensationTraumaTreatment EfficacyTremorVeteransWith lateralityanimal imagingbehavior testblood-brain barrier permeabilizationbrain computer interfacechronic paincohortcommercializationdelivery vehicledosagefluorescence imagingfunctional restorationimaging modalityimplantable deviceimplantationimprovedlimb movementmedical implantnanolabelnanoparticleneuralneuroinflammationneuromuscularpharmacokinetics and pharmacodynamicspreventresponsesafety assessmentsensorside effecttissue processingtreatment comparison
项目摘要
The overall goal of this proposal is to improve the chronic performance of intracortical recording microelectrodes
using a targeted drug-delivery approach. Microelectrode-based devices have the potential to resolve many
challenges in rehabilitation for Veterans with paralysis and/or amputation. Notably, brain-computer interface
(BCI) endeavors within the VA have provided patients the ability to control electromechanical or neuromuscular
prostheses using ‘thoughts’ or signals from their motor cortex. BCIs are further being extended by researchers
at the VA to restore the sensation of touch by integrating sensors and stimulators into mechanical prosthetic
limbs.3-5 While the promises of intracortical microelectrode interfaces are significant, the devices suffer from a
key challenge: long term stability and functionality. The failure modes are multifaceted, but a substantial
component is attributed to vascular trauma from implantation that initiates bleeding and a prolonged biological
response, including inflammation which leads to significant reduction in healthy neurons near recording contacts.
Several FDA-approved drugs have demonstrated the ability to reduce the biological inflammatory response and
augment microelectrode recording performance in rodents. However, due to limitations of pharmacokinetics and
pharmacodynamics, most of the agents reach the implant site in relatively low concentrations, limiting the
magnitude of effect and/or requiring frequent dosages to attain meaningful results. Additionally, in the case of
steroids and antibiotics, long-term systemic administration is contraindicated due to side effects on peripheral
systems. Leveraging a platelet-inspired drug delivery platform currently undergoing commercialization, we have
engineered a method for targeting drugs specifically to the microelectrode implantation site. Localizing the drug
to the microelectrode site will reduce the systemically administered dose, while minimizing the payload delivered
to peripheral organs, e.g., liver and kidneys. During this study, we will focus on delivering the drug,
dexamethasone (Dex), which is a potent glucocorticoid steroidal anti-inflammatory drug. While we have
demonstrated the ability to target the microelectrode with drug-loaded nanoparticles, further optimization of
dosing with Dex and characterization of chronic recordings are needed. Our objective is to establish a safe and
effective drug-delivery platform for localized therapy to improve chronic BCI performance. We hypothesize that
administration of targeted dexamethasone-loaded nanoparticles (Dex-NPs) will prevent chronic scarring and
neurodegeneration associated with improved chronic recording quality of intracortical microelectrodes and
associated motor-behavioral function. If proven effective, the platform may be further developed and
characterized to release other pharmaceutical payloads that have unique or complementary effects on the
system. Additionally since the delivery platform is being commercialized, there is increased potential for scaling
the technology to human application.
该提案的总体目标是提高皮质内记录微电极的长期性能
使用基于微电极的靶向药物输送方法有可能解决许多问题。
瘫痪和/或截肢退伍军人康复面临的挑战尤其是脑机接口。
(BCI) VA 内的努力为患者提供了控制机电或神经肌肉的能力
研究人员正在进一步扩展使用来自运动皮层的“思想”或信号的假肢。
VA 通过将传感器和刺激器集成到机械假肢中来恢复触觉
3-5 虽然皮质内微电极接口的前景很重要,但这些设备存在以下问题:
关键挑战:长期稳定性和功能性 故障模式是多方面的,但影响很大。
该成分归因于植入引起的血管创伤,导致出血和长时间的生物滞留。
反应,包括炎症,导致记录接触点附近的健康神经元显着减少。
FDA 批准的几种药物已被证明能够减少生物炎症反应和
增强啮齿动物的微电极记录性能然而,由于药代动力学和的限制。
从药效学来看,大多数药物以相对较低的浓度到达植入部位,限制了
在这种情况下,效果的大小和/或需要频繁的剂量才能获得有意义的结果。
类固醇和抗生素,由于对外周的副作用,长期全身给药是禁忌的
利用目前正在进行商业化的血小板启发药物输送平台,我们拥有
设计了一种将药物专门靶向微电极植入部位的方法。
到微电极部位将减少全身给药剂量,同时最大限度地减少传递的有效负载
到周围器官,例如肝脏和肾脏 在这项研究中,我们将重点关注药物的输送,
地塞米松(Dex),这是一种有效的糖皮质激素类固醇抗炎药。
能够用载药纳米颗粒靶向微电极,进一步优化
我们的目标是建立一个安全且可靠的方法。
用于局部治疗以改善慢性 BCI 表现的有效药物输送平台。
施用靶向地塞米松负载纳米粒子(Dex-NPs)将预防慢性疤痕和
神经退行性变与皮质内微电极慢性记录质量的改善相关
如果证明有效,该平台可以进一步开发和使用。
其特点是释放其他药物有效负载,这些药物有效负载对药物具有独特或互补的作用
此外,由于交付平台正在商业化,因此扩展的潜力也越来越大。
技术对人类的应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of a Temporary Peripheral Nerve Stimulation Electrode Utilizing a Bioabsorbable Suture Substrate.
- DOI:10.1109/embc48229.2022.9871604
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey R Capadona其他文献
Jeffrey R Capadona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10418649 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10217285 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
- 批准号:
10599364 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10356848 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
- 批准号:
10561933 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10840055 - 财政年份:2019
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Nitric oxide-releasing glycosaminoglycans for treating complex wounds
释放一氧化氮的糖胺聚糖用于治疗复杂伤口
- 批准号:
10584269 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SymHeal: A novel therapy for treating non-healing diabetic ulcers
SymHeal:一种治疗不愈合糖尿病溃疡的新疗法
- 批准号:
10602837 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals with Transtibial Amputation Using Dynamic Stereo X-Ray
使用动态立体 X 射线量化小腿截肢者残肢窝接口中的骨骼和皮肤运动
- 批准号:
10597108 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of photoacoustic tomography for non-invasive, label-free imaging of tissue perfusion in chronic wounds
开发用于慢性伤口组织灌注非侵入性、无标记成像的光声断层扫描技术
- 批准号:
10209788 - 财政年份:2021
- 资助金额:
-- - 项目类别: