Characterizing and mitigating the role of oxidative damage in microelectrode failure

表征和减轻氧化损伤在微电极故障中的作用

基本信息

  • 批准号:
    10561933
  • 负责人:
  • 金额:
    $ 11.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

The Capadona group has identified the role of inflammation-mediated oxidative stress products in microelectrode-initiated neuroinflammation to be the most comprehensive source contributing to poor electrode reliability. In order to realize the potential of any application using intracortical microelectrodes, we must minimize the degradative side effects caused by oxidative stress products, without inhibiting the beneficial wound healing aspects of inflammation. We have used a variety of antioxidant treatments to demonstrate a reduction in intracortical microelectrode-mediated oxidative stress and preserve neuron viability. Our most promising strategy to date for improving intracortical recording reliability is our biomimetic antioxidative coating. Our initial efforts focused on planar silicon substrates for ease of characterization, cost, and their recent popularity in the literature. Our preliminary data suggest that our novel antioxidative-coated microelectrodes reduce the initial inflammatory response, preserve neuron populations, and improve initial recording quality. The initial mimetic coating is not a comprehensive antioxidative strategy. Oxidative stress can be initiated by either a damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) pathway. In the proposed study, we will specifically investigate the effect that antioxidant-coated microelectrodes have on the stability of stimulation and neural recordings. Our electrodes will be coated with antioxidants that target either PAMP, DAMP, or both PAMP and DAMP pathways, in order to develop a comprehensive, but not overly suppressive approach. In order to be applicable to on-going clinical trials, our coating must also be translatable to the only penetrating recording microelectrode approved by the US FDA. Therefore, we have shown that these antioxidants can be attached to Parylene C. The innovation of this proposal is in the application of a platform approach to surface modify Parylene C coated Blackrock Arrays, to effectively minimize two of the leading causes of intracortical microelectrode failure: materials damage and biological damage. On a more fundamental level, this work will also examine how varying the dimensions of intracortical microelectrodes impacts both ROS and the tissue response. Extremely thin devices, regardless of inherent Young's modulus of the constituent material, become very flexible. Due to its high fracture resistance, we will leverage amorphous silicon carbide to create microelectrode probes with small thicknesses. Such probes will enable us to test the hypothesis that oxidative stress and neuroinflammation are proportional to the device dimension and resulting rigidity. We will further demonstrate that the associated oxidative stress and neuroinflammation generated from larger more rigid devices can be subdued by coating the implant with antioxidants.
卡帕多纳小组已经确定了炎症介导的氧化应激产物在 微电极引发的神经炎症是导致贫困的最全面的来源 电极可靠性。为了实现使用皮质内微电极的任何应用的潜力, 我们必须最大限度地减少氧化应激产物引起的降解副作用,同时又不抑制 炎症有益的伤口愈合方面。 我们使用了多种抗氧化治疗来证明皮质内 微电极介导的氧化应激并保持神经元活力。我们最有希望的战略 提高皮质内记录可靠性的最新成果是我们的仿生抗氧化涂层。我们最初的 努力集中在平面硅衬底上,以便于表征、成本及其最近的流行 在文献中。我们的初步数据表明,我们的新型抗氧化涂层微电极减少了 初始炎症反应,保留神经元群,并提高初始记录质量。 最初的模拟涂层并不是一种全面的抗氧化策略。氧化应激可以是 由损伤相关分子模式 (DAMP) 或病原体相关分子启动 模式(PAMP)途径。在拟议的研究中,我们将专门研究以下效果: 抗氧化剂涂层微电极对刺激和神经记录的稳定性有影响。我们的 电极将涂有针对 PAMP、DAMP 或同时针对 PAMP 和 DAMP 的抗氧化剂 途径,以制定全面但不过分压制的方法。 为了适用于正在进行的临床试验,我们的涂层还必须可转化为唯一的 美国FDA批准的穿透记录微电极。因此,我们已经证明这些 抗氧化剂可以附着在Parylene C上。该提案的创新之处在于应用了 表面改性聚对二甲苯 C 涂层 Blackrock 阵列的平台方法,以有效地最小化两个 皮质内微电极失效的主要原因:材料损伤和生物损伤。 在更基本的层面上,这项工作还将研究如何改变皮质内的尺寸 微电极影响 ROS 和组织反应。极薄的设备,无论 构成材料固有的杨氏模量,变得非常灵活。由于其高断裂 电阻,我们将利用非晶碳化硅来制造具有小尺寸的微电极探针 厚度。这些探针将使我们能够检验氧化应激和 神经炎症与装置尺寸和由此产生的刚性成正比。我们将进一步 证明更大更刚性的细胞会产生相关的氧化应激和神经炎症 可以通过在植入物上涂上抗氧化剂来抑制设备的产生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey R Capadona其他文献

Jeffrey R Capadona的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金

Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10418649
  • 财政年份:
    2020
  • 资助金额:
    $ 11.42万
  • 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10642761
  • 财政年份:
    2020
  • 资助金额:
    $ 11.42万
  • 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10217285
  • 财政年份:
    2020
  • 资助金额:
    $ 11.42万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10060750
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10533265
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10311087
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
  • 批准号:
    10599364
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
  • 批准号:
    10356848
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
  • 批准号:
    10840055
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
Senior Research Career Scientist
高级研究职业科学家
  • 批准号:
    10749218
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:

相似国自然基金

手性植物器官的生物力学与仿生学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
鸟颈刚柔耦合维稳生物力学机理研究
  • 批准号:
    51905155
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大视场、宽光谱亚波长光子筛复眼成像机理研究
  • 批准号:
    61875166
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
海洋生物无机矿物多孔结构及其材料仿生学基础研究——以海胆、珊瑚为例
  • 批准号:
    51662006
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
基于生物网络简并性的仿生抗扰电路实现方法研究
  • 批准号:
    51407194
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
  • 批准号:
    10722387
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Development of Protein Like Polymer Therapeutics for Modulating the Nrf2/Keap1 Protein Protein Interaction in Neurodegenerative Diseases
开发用于调节神经退行性疾病中 Nrf2/Keap1 蛋白相互作用的类蛋白聚合物疗法
  • 批准号:
    10537489
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10060750
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10533265
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10311087
  • 财政年份:
    2019
  • 资助金额:
    $ 11.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了