Core C- Bioinformatics Core
核心C-生物信息学核心
基本信息
- 批准号:10533741
- 负责人:
- 金额:$ 17.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAreaBioinformaticsCandidate Disease GeneCellsCodeComputer AnalysisComputing MethodologiesDNA Sequence AlterationDNA methylation profilingDNA sequencingDataData AnalysesData SetData SourcesDatabasesDetectionDevelopmentElementsEpigenetic ProcessEthnic OriginFolic AcidGene FrequencyGenesGeneticGenetic TranscriptionGenomicsGenotypeGoalsHumanInheritedMassive Parallel SequencingMeningomyeloceleMethodsMethylationMiningMinisatellite RepeatsModalityModelingModernizationMolecular BiologyMusMutationNeural tubeParentsPathogenicityPathway AnalysisPathway interactionsPatientsPhenotypePopulationProductivityPromoter RegionsProteinsRanaReproducibilityResearch PersonnelRiskSamplingScienceServicesShort Tandem RepeatStatistical ModelsTandem Repeat SequencesTechniquesTechnologyTissuesValidationVariantVisualizationWorkanalysis pipelinebioinformatics pipelinebisulfite sequencingcandidate identificationcomputer sciencedata harmonizationdata pipelinedietarydifferential expressionexome sequencinggene environment interactiongene interactiongenetic variantimprovedin silicoinnovationlarge datasetsmethod developmentmethylomemultiple omicsnext generation sequencingnovelprogramsprotein expressionprotein functionprotein protein interactionrisk variantsegregationsingle cell analysissingle cell sequencingsingle-cell RNA sequencingstatisticstranscriptome sequencingwhole genome
项目摘要
PROJECT SUMMARY – Core C: Bioinformatics
Bioinformatics is the application of statistics and computer science to the field of molecular biology. It has
emerged as a field unto itself, as the datasets that are generated by modern biomedical researchers easily
exceeds what can be directly visualized. The vast amount of data increases the chance of false-negative and
false-positive results, and argue for robust statistical models and reproducible workflows. Core C will work with
the data generated from massive parallel sequencing from human, frog and mouse in Project I, II and III and
Core B to extract variants that have potential to cause meningomyelocele or influence neural tube
phenotypes. The PIs of the Projects and Cores have worked together extensively in the past, and have an
established track record of productivity in the area of next generation sequencing (NGS) data analysis. Dr. Bafna
has worked broadly in bioinformatics and genomics in the development computational methodologies employing
novel algorithms and statistical techniques for NGS datasets. We envision that the DNA sequencing derived
from Project I in the form of whole genome or whole exome sequencing from patients and their parents will be
delivered to Core C for determination of potentially pathogenic risk-associated variant prioritization. RNA
sequencing, single cell sequencing and epigenetic sequencing data generated from Core B, as well as imported
from Project I, II and III, will be delivered to Core C for extraction of expression changes, which will be delivered
to each of the Projects for segregation analysis and further validation. The Bioinformatics Core will provide these
analysis pipelines to identify and annotate variants, and to develop innovative network analyses, RNAseq,
Methylseq and single cell analysis to discover novel genetic mechanisms of MM based on Protein-Protein
Interaction (PPI) and gene co-expression networks, to interpret large datasets from current genetic and
genomic technologies, and to apply these in the different components of this Program Project. Although our
primary goal is to provide service using existing computational methods, we expect that the Core B will also
develop novel computational methods as required by the Projects and Cores, as we have done to develop
our current WGS analysis pipeline. Methods development will be geared towards fundamental unsolved
problems underlying the above four key functions, such as algorithms for correlating variants to phenotypes,
further improvements in methods for computing epistatic interactions, detection of short tandem repeats and
mobile elements from WGS, advanced methods for integration of genotypes with pathways, use of next-
generation sequencing (NGS) in analysis of gene association, and discovery of genetic variants that influence
protein expression or function.
项目摘要 - 核心C:生物信息学
生物信息学是统计和计算机科学在分子生物学领域的应用。它有
作为一个领域,作为一个现代生物医学研究人员生成的数据集出现
超过可以直接可视化的东西。大量数据增加了假阴性和
假阳性结果,并主张强大的统计模型和可再现的工作流程。核心将与
项目I,II和III和
核心B提取有可能引起脑膜瘤或影响神经管的变体
表型。过去的项目和核心的PI在过去已经广泛合作,并且有一个
在下一代测序(NGS)数据分析领域的生产力的建立记录。 Bafna博士
在采用开发计算方法的生物信息学和基因组学方面广泛工作
NGS数据集的新型算法和统计技术。我们设想DNA测序得出
以全基因组或整个外显子组测序的形式从患者及其父母进行的整个外显子组测序的形式
递送到核心C,以确定潜在的致病风险相关变体优先级。 RNA
测序,单细胞测序和表观遗传测序数据从核心B产生,并导入
从项目I,II和III项目中,将传递到Core C以提取表达更改,将交付
每个项目进行隔离分析和进一步验证。生物信息学核心将提供这些
分析管道以识别和注释变体,并开发创新的网络分析,RNASEQ,
基于蛋白质 - 蛋白质的甲基甲基和单细胞分析,以发现MM的新遗传机制
相互作用(PPI)和基因共表达网络,以解释当前遗传和
基因组技术,并将其应用于该程序项目的不同组成部分。虽然我们的
主要目标是使用现有计算方法提供服务,我们希望核心B也将
按照我们开发的项目和核心的要求,开发了新颖的计算方法
我们当前的WGS分析管道。方法开发将针对基本未解决
上述四个关键函数的基础问题,例如将变体与表型相关的算法,
进一步改进了计算上皮相互作用的方法,检测短串联重复序列和
WGS的移动元素,用于将基因型与途径集成的高级方法,使用下一步
在基因关联分析中生成测序(NGS),并发现影响的遗传变异
蛋白质表达或功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vineet Bafna其他文献
Vineet Bafna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vineet Bafna', 18)}}的其他基金
Software and algorithms for elucidating the structure, function, and evolution of extrachromosomal DNA
用于阐明染色体外 DNA 的结构、功能和进化的软件和算法
- 批准号:
10704060 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
Software and algorithms for elucidating the structure, function, and evolution of extrachromosomal DNA
用于阐明染色体外 DNA 的结构、功能和进化的软件和算法
- 批准号:
10477356 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
Software and algorithms for elucidating the structure, function, and evolution of extrachromosomal DNA
用于阐明染色体外 DNA 的结构、功能和进化的软件和算法
- 批准号:
10305480 - 财政年份:2021
- 资助金额:
$ 17.62万 - 项目类别:
相似国自然基金
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
- 批准号:72304011
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
面向有限监督信息的脑影像感兴趣区域分割及应用
- 批准号:62376123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
壳聚糖-没食子酸“共价牵手”协同焦磷酸盐“区域保护”调控肌原纤维蛋白凝胶特性的分子机制研究
- 批准号:32302110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双区域自然对流耦合模型的高效数值方法研究
- 批准号:12361077
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
典型中小城市区域暴雨积水动态过程集合量化智能解析研究
- 批准号:52379008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Cell tracking in low-frame-rate video based on displacement prediction
基于位移预测的低帧率视频中的细胞跟踪
- 批准号:
10648570 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别: