Cell tracking in low-frame-rate video based on displacement prediction
基于位移预测的低帧率视频中的细胞跟踪
基本信息
- 批准号:10648570
- 负责人:
- 金额:$ 20.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:A549AddressAffectAirAlgorithmsAreaBiochemistryBioinformaticsBiologicalBiologyCell NucleusCellsCellular biologyCessation of lifeClassificationCloverConsumptionDataData SetDevelopmental BiologyDropsEnvironmentEquipmentEvaluationEventFormulationFutureGeneticHL60HealthHourImageLearningLinkLocomotionMCF10A cellsMDA MB 231Machine LearningMammalian CellManualsMeasuresMedicineMembraneMethodsMicroscopeMorphologic artifactsMorphologyMovementPerformancePhotobleachingPhototoxicityPreparationRegenerative MedicineResearchResearch PersonnelResourcesScienceSpeedTechniquesTemperatureTestingTimeTrainingVisualizationWorkcell analyzercell motilitycell typecellular imagingcostcytatecytotoxicitydeep learningdeep neural networkdesigndrug discoveryimprovedinnovationinterestlight transmissionlive cell imagingneural networknovel strategiesrecurrent neural networktool
项目摘要
Project Summary
Tracking living cells in video sequences is a fundamental task in many fields of science,
including biochemistry, bioinformatics, cell biology, and genetics. Manually linking cells is
extremely time-consuming and not feasible in large-scale analysis. Automatic approaches can
compute cell links by measuring how close two instances of a cell are, or how similar they look.
These techniques work well with video acquired at a relatively high frame rate, but,
unfortunately, acquiring images at high frame rates affects cells negatively. Too frequent
imaging not only causes phototoxicity, leading to experimental artifacts, but also
photobleaching, leading to the inability to measure quantities of interest over time. In addition,
during image acquisition, the environment temperature and air quality are typically less
controlled, which could also contribute to cytotoxicity. Moreover, when performing high-
throughput live-cell imaging, the lower the acquisition rate, the more cells/plates can be imaged,
and, consequently, the more experimental treatments can be applied and studied.
If reducing the acquisition rate is beneficial for all these reasons, it severely affects the accuracy
of cell tracking algorithms. To this end, we propose a new class of cell tracking approaches based
on cell movement predictions. Instead of comparing cells based on their similarity, we propose
to predict where every cell will move in the next frame. This will allow for searching the
occurrence of such cells, even if the next frame was acquired after an extended period. The
new approach will be investigated using a newly generated dataset for low frame rate cell
tracking (Aim 1). Cell displacement will be predicted by using a new Recurrent Neural Network
designed for the task (Aim 2). Cell tracking algorithms will be defined re-evaluating existing
approaches under low-frame rate constraints when using cell displacement information (Aim
3).
While current approaches require image acquisition to occur at least every 5-15 minutes, we
will investigate the feasibility of cell tracking on images acquired at intervals of up to 2 hours. If
successful, our research will allow to accurately track cells in low frame rate video sequences
without the need for specialized tools or equipment.
项目摘要
在视频序列中跟踪活细胞是许多科学领域的基本任务,
包括生物化学,生物信息学,细胞生物学和遗传学。手动连接单元是
在大规模分析中非常耗时,并且不可行。自动方法可以
通过测量细胞的两个实例有多接近或它们的外观来计算细胞链接。
这些技术与以相对较高的帧速率获取的视频很好地运行,但是
不幸的是,以高帧速率获取图像会对细胞产生负面影响。太常见了
成像不仅会引起光毒性,从而导致实验性伪影,还会引起实验性毒性
光漂白,导致无法随着时间的推移衡量兴趣数量。此外,
在图像获取过程中,环境温度和空气质量通常较低
受控,这也可能有助于细胞毒性。而且,在执行高级时
吞吐量活细胞成像,采集速率越低,可以成像的单元/板越多,
因此,可以应用和研究更多的实验治疗方法。
如果由于所有这些原因降低采集率是有益的,则严重影响准确性
细胞跟踪算法。为此,我们提出了基于细胞跟踪方法的新类别
关于细胞运动预测。我们提出的不是基于细胞的相似性比较细胞的相似性
预测每个单元将在下一个帧中移动的位置。这将允许搜索
即使在延长后获得下一个框架,也会发生这种细胞。这
将使用新生成的低框架率单元的数据集研究新方法
跟踪(目标1)。通过使用新的复发神经网络预测细胞位移
为任务设计(AIM 2)。细胞跟踪算法将被定义为重新评估现有
使用细胞位移信息时,在低框架速率约束下的方法(AIM
3)。
虽然当前的方法需要至少每5-15分钟一次进行图像获取,但我们
将研究细胞跟踪对图像的可行性,最多2小时。如果
成功,我们的研究将允许在低帧速率视频序列中准确跟踪细胞
无需专门的工具或设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Iuricich其他文献
Federico Iuricich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Antitumor potential of AvFc lectibody in non-small cell lung cancer
AvFc 凝集体在非小细胞肺癌中的抗肿瘤潜力
- 批准号:
10717195 - 财政年份:2023
- 资助金额:
$ 20.41万 - 项目类别:
The Role of alternative mRNA polyadenylation in SARS-CoV-2 replication & the host response
替代 mRNA 多聚腺苷酸化在 SARS-CoV-2 复制中的作用
- 批准号:
10450983 - 财政年份:2022
- 资助金额:
$ 20.41万 - 项目类别:
Mechanistic factors limiting utility of adenovirus vectors for treatment of neopla
限制腺病毒载体治疗肿瘤的机制因素
- 批准号:
10618174 - 财政年份:2022
- 资助金额:
$ 20.41万 - 项目类别:
Mechanistic factors limiting utility of adenovirus vectors for treatment of neopla
限制腺病毒载体治疗肿瘤的机制因素
- 批准号:
10356582 - 财政年份:2022
- 资助金额:
$ 20.41万 - 项目类别:
Natural Killer cells and the Immunogenetics of COVID-19
自然杀伤细胞和 COVID-19 的免疫遗传学
- 批准号:
10686171 - 财政年份:2021
- 资助金额:
$ 20.41万 - 项目类别: