Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
基本信息
- 批准号:10522177
- 负责人:
- 金额:$ 35.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBehaviorBindingBioinformaticsBiological AssayBiologyBiosensorCell Culture TechniquesCell physiologyCellsChargeChemicalsCholeraClinicalCombating Antibiotic Resistant BacteriaComplexDevelopmentDietDrug CompoundingDrug DesignDyesElectron MicroscopyEnvironmentEnvironmental Risk FactorEnzymesFlow CytometryFluorescent DyesFood PoisoningFoundationsFundingGene ExpressionGeneticGoalsGram-Negative BacteriaGrowthHealthHealth StatusHumanImageImage CytometryInflammatory Bowel DiseasesLightLinkMammalian CellMeasuresMessenger RNAMethodsMicrobial BiofilmsMicrobiologyModelingMolecular GeneticsMolecular StructureMonitorNoiseNutrientOrganismOutcomePathway interactionsPeriodicityPermeabilityPhasePhysiologicalProcessProductionPropertyRNARegulationRegulator GenesRegulatory PathwayResearchSignal TransductionSignaling MoleculeSpeedStructureStructure-Activity RelationshipSurfaceTechnologyTimeToxinTyphoid FeverUrinary tract infectionbasecell motilitycellular imagingenzyme activitygenetic analysisgut colonizationgut healthgut microbiotahigh throughput analysishigh throughput screeningimprovedin situ imaginginsightmolecular imagingnext generationnovelpathogenpathogenic bacteriaprebioticsprogramspublic health relevanceratiometricreal time monitoringscreeningsmall moleculetooluptake
项目摘要
PROJECT SUMMARY
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
Our research aims to understand how bacteria perceive chemical signals to regulate different behaviors. We
have invented different types of biosensors to rapidly measure key signaling molecules in bacteria, including one
for cyclic di-GMP. This signal controls whether bacteria attach to surfaces, form sticky biofilms, and secrete
toxins. One of our major goals is to identify nutrients, other chemicals, and environmental inputs that change
cyclic di-GMP levels in different bacteria. We recently demonstrated a successful approach that combines
structure-based bioinformatics analysis and experimental screening. However, the discovery of primary inputs
remains challenging because each bacterium harbors many cyclic di-GMP signaling enzymes, the signal is
transiently produced, highly charged, and low in abundance, and the screening method remains a key bottleneck.
Thus, this proposal will develop next-generation fluorescent biosensors to enhance high-throughput, quantitative
screening of enzyme activity directly in cells (Aim 2). These biosensors then will be applied to discover primary
inputs for a widespread small molecule binding domain associated with cyclic di-GMP and other signaling
enzymes (Aim 3). In addition, towards understanding environmental factors that regulate cyclic di-GMP, this
proposal will develop a new type of biosensor to perform in situ imaging of cyclic di-GMP in biofilms (Aim 3). In
the long term, this project aims to inform personalized diets to treat inflammatory bowel diseases and promote
gut health.
For this renewal of the project, the original scope also has been expanded to study the permeability of small
molecules into bacterial cells. The permeability process includes passive permeation, active uptake, and active
efflux mechanisms, and is critical to bacterial growth, signaling, and antibiotic resistance. This proposal will
develop a high-throughput assay that enables real-time monitoring of small molecule permeability in cells (Aim
1). The assay will be applied to understand both the molecular structures and genetic factors that affect
accumulation of fluorescent dyes and of clinical antibiotics inside cells. In the long term, this new aim will improve
chemical biology tools that use these dyes and antibiotics treatments.
项目摘要
启用细菌信号的高通量分析和单细胞成像
我们的研究旨在了解细菌如何感知化学信号来调节不同的行为。我们
已经发明了不同类型的生物传感器来快速测量细菌中的关键信号分子,包括一个
用于环状DI-GMP。该信号控制细菌是否附着在表面上,形成粘性生物膜并分泌
毒素。我们的主要目标之一是确定改变的营养,其他化学物质和环境投入
不同细菌中的环状DI-GMP水平。我们最近展示了一种成功的方法
基于结构的生物信息学分析和实验筛选。但是,发现主要输入
仍然具有挑战性,因为每个细菌都有许多环状DI-GMP信号传导酶,该信号为
瞬时产生,高电荷且丰度低,筛选方法仍然是关键的瓶颈。
因此,该建议将开发下一代荧光生物传感器,以增强高通量,定量
直接在细胞中筛选酶活性(AIM 2)。然后,这些生物传感器将用于发现主要
与环状DI-GMP相关的广泛的小分子结合结构域的输入和其他信号
酶(目标3)。此外,要了解调节环状DI-GMP的环境因素,这
提案将开发一种新型的生物传感器,以在生物膜中进行环状DI-GMP的原位成像(AIM 3)。在
长期,该项目旨在告知个性化饮食以治疗炎症性肠病并促进
肠道健康。
对于该项目的续约,原始范围也已扩展以研究小型的渗透性
分子进入细菌细胞。渗透率过程包括被动渗透,主动吸收和有效
外排机制,对于细菌生长,信号传导和抗生素耐药性至关重要。该提议将
开发高通量测定法,该测定能够实时监测细胞中的小分子渗透性(AIM
1)。该测定将用于了解影响分子结构和遗传因素
荧光染料和细胞内临床抗生素的积累。从长远来看,这个新目标将改善
使用这些染料和抗生素治疗的化学生物学工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Chen Hammond其他文献
Ming Chen Hammond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Chen Hammond', 18)}}的其他基金
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10709561 - 财政年份:2017
- 资助金额:
$ 35.48万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
9368567 - 财政年份:2017
- 资助金额:
$ 35.48万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
9744967 - 财政年份:2017
- 资助金额:
$ 35.48万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10001046 - 财政年份:2017
- 资助金额:
$ 35.48万 - 项目类别:
A Chemical Biology Approach to Tagging RNAs in Live Cells
标记活细胞中 RNA 的化学生物学方法
- 批准号:
8146809 - 财政年份:2011
- 资助金额:
$ 35.48万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Intestinal Microbiota Affect Stroke Outcome by Modulating the Dendritic Cell-regulatory T Cell Axis
肠道微生物群通过调节树突状细胞调节 T 细胞轴影响中风结果
- 批准号:
10751249 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
A novel, non-antibiotic, microbiome-directed agent to prevent post-surgical infection
一种新型、非抗生素、微生物组导向剂,用于预防术后感染
- 批准号:
10600765 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
Mechanisms of Klebsiella pneumoniae gastrointestinal colonization
肺炎克雷伯菌胃肠道定植机制
- 批准号:
10736879 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
Capsular locus deep sequencing to study Klebsiella populations
荚膜位点深度测序研究克雷伯氏菌种群
- 批准号:
10679308 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别: