Mechanisms of Klebsiella pneumoniae gastrointestinal colonization
肺炎克雷伯菌胃肠道定植机制
基本信息
- 批准号:10736879
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-14 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAntibiotic ResistanceArginineBiologicalBiological AssayBypassCatabolismCell membraneCellular MembraneDataDevelopmentDietDiseaseEthanolaminesFailureFecesGastrointestinal tract structureGenesGenetic ScreeningGnotobioticGram-Negative BacteriaImmune systemImmunocompetentIn VitroInfectionInflammatoryInvestigationKineticsKlebsiella pneumoniaeKnock-outKnowledgeLibrariesLinkMetabolic PathwayMetabolismMetagenomicsModelingMolecularMucous MembraneMulti-Drug ResistanceMusNosocomial InfectionsNutrientNutritionalOperonOralOropharyngealOutcomePathway interactionsPatientsPreventionProcessRegulationRoleRouteSiteSourceSystemburden of illnesscolonization resistancecombatdiarrheal diseasedigitaldrug resistant pathogenenteric pathogenepidemiology studyfitnessgastrointestinalgene productgenomic locusgut colonizationgut microbiomegut microbiotahost colonizationin vivoinsightmembermetabolomicsmetagenomemetagenomic sequencingmicrobiomemicrobiome componentsmicrobiotamicroorganismmouse modelmutantnovelpathogenpathogenic bacteriapublic health relevancesuccesstransmission processuptake
项目摘要
Abstract
Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds
of millions of patients worldwide. Klebsiella pneumoniae (Kpn), a gram-negative bacterium, is notorious for
causing HAI, with many of these infections difficult to treat as Kpn has become multi-drug resistant.
Epidemiological studies suggest that gastrointestinal (GI) colonization of Kpn is a major reservoir through
which Kpn can cause disease manifestations either in the colonized host or transmit from host to host. This site
of Kpn colonization has not been the focus of previous studies as a tractable model of Kpn GI colonization, and
host-to-host transmission did not exist. We have recently developed a murine model that allows for the study
of Kpn mucosal (oropharynx and GI) colonization, shedding within feces, and transmission through the fecal-oral
route. Using an oral route of inoculation and fecal shedding as a marker for GI colonization, we show
that Kpn can asymptomatically colonize the GI tract of immunocompetent mice and modifies the host GI
microbiota. We premise that specific Kpn genes contribute to its GI colonization, and the products of these genes
could serve as novel targets for the prevention of the establishment of GI colonization. More recently, we used
our murine model to screen a library of Kpn random transposon mutants (In-seq) to identify the complete set of
“GI colonization” genes from a single isolate. A metagenomics sequencing analysis further identified bacterial
species and the metabolic pathways affected by Kpn in the GI tract. Herein, we will focus on two sets of pathways
identified through In-seq whose products allow Kpn to overcome colonization resistance provided by the resident
gut microbiota. Thus, in Aim#1, we will focus on the ethanolamine utilization pathway genes (eut) of Kpn that
allow it to utilize ethanolamine (EA), a byproduct of cellular membranes and diet in the gut that can serve as an
alternative nutrient source. Unlike many other enteric pathogens that contain a single eut operon, Kpn has two
genetically distinct eut operons. We will identify the role of each eut locus in EA metabolism and determine the
underlying molecular mechanism through which EA metabolism provides Kpn with a fitness advantage against
members of the microbiome. Aim#2 will take a different approach by focusing on the contact-dependent killing
machinery of the Kpn (Type 6 secretion system [T6SS]) in overcoming colonization resistance provided by the
resident microbiota. We will focus on the unique regulatory mechanism that modulates the expression
of Kpn T6SS in the GI tract and provide it with a selective and competitive advantage against the resident gut
microbiota. Results from these studies would provide us with a fundamental understanding of the molecular
mechanisms involved in the establishment of GI colonization by an incoming pathogen. These studies will also
lay the groundwork for developing potential strategies to reduce the Kpn disease burden.
抽象的
由耐药病原体传播引起的医院获得感染(HAI)影响了数百种
全球数百万患者。革兰氏阴性细菌Klebsiella肺炎(KPN)臭名昭著
引起HAI,其中许多感染很难将KPN视为抗多药。
流行病学研究表明,KPN的胃肠道(GI)定植是通过
KPN可以在殖民的宿主中引起疾病表现,或者从宿主传播到宿主。这个网站
KPN殖民化并不是先前研究的重点,作为KPN GI定植的可探讨模型,并且
主机到宿主传输不存在。我们最近开发了一种鼠模型,该模型允许研究
KPN粘膜(口咽和GI)定植,粪便中脱落,并通过粪便传播
路线。我们使用口服接种和粪便脱落作为胃肠道定植的标记
KPN可以不对称地定居于免疫能力小鼠的胃肠道,并修改宿主GI
微生物群。我们前提是特定的KPN基因有助于其GI定植,这些基因的产物
可以作为预防胃肠道殖民建立的新目标。最近,我们使用了
我们的鼠模型以筛选KPN随机转座子突变体(In-Seq)的库,以识别完整的集合
来自单个分离物的“ GI殖民化”基因。宏基因组测序分析进一步鉴定了细菌
胃肠道中KPN影响的物种和代谢途径。在此,我们将重点关注两组途径
通过seq确定其产品允许KPN克服居民提供的定殖抗性
肠道菌群。在AIM#1中,我们将专注于KPN的乙醇胺利用率途径基因(EUT)
允许它利用乙醇胺(EA),乙醇胺和肠道中的细胞膜和饮食的副产品可以用作
替代营养来源。与许多包含单个EUT操纵子的其他促进病原体不同,KPN有两个
遗传上不同的EUT操纵子。我们将确定每个EUT基因座在EA代谢中的作用,并确定
EA代谢提供了具有适应性优势的KPN的基本分子机制
微生物组的成员。 AIM#2将通过关注接触依赖性杀戮来采取不同的方法
KPN的机械(6型分泌系统[T6SS])克服了由
居民微生物群。我们将专注于调节表达的独特调节机制
胃肠道中的KPN T6SS的数量,并为居民提供选择性和竞争优势
微生物群。这些研究的结果将为我们提供对分子的基本理解
通过传入的病原体建立胃肠道定植的机制。这些研究也将
为制定减少KPN疾病伯恩的潜在策略的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Ammar Zafar其他文献
Muhammad Ammar Zafar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Ammar Zafar', 18)}}的其他基金
Biology of hypervirulent Klebsiella pneumoniae translocation from the gastrointestinal tract
高毒力肺炎克雷伯菌从胃肠道易位的生物学
- 批准号:
10515338 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Biology of hypervirulent Klebsiella pneumoniae translocation from the gastrointestinal tract
高毒力肺炎克雷伯菌从胃肠道易位的生物学
- 批准号:
10354624 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Determining the mechanisms by which YesMN drives pneumococcal host-to-host transmission
确定 YesMN 驱动肺炎球菌主机间传播的机制
- 批准号:
10186702 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
Determining the mechanisms by which YesMN drives pneumococcal host-to-host transmission
确定 YesMN 驱动肺炎球菌主机间传播的机制
- 批准号:
10041178 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Intestinal Microbiota Affect Stroke Outcome by Modulating the Dendritic Cell-regulatory T Cell Axis
肠道微生物群通过调节树突状细胞调节 T 细胞轴影响中风结果
- 批准号:
10751249 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
A novel, non-antibiotic, microbiome-directed agent to prevent post-surgical infection
一种新型、非抗生素、微生物组导向剂,用于预防术后感染
- 批准号:
10600765 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Engineering next generation probiotics for delivery of therapeutics
设计下一代益生菌以提供治疗
- 批准号:
10697438 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Capsular locus deep sequencing to study Klebsiella populations
荚膜位点深度测序研究克雷伯氏菌种群
- 批准号:
10679308 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别: