Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
基本信息
- 批准号:9368567
- 负责人:
- 金额:$ 32.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimalsBacteriaBacterial GenomeBehaviorBile AcidsBiological AssayBiosensorBorrelia burgdorferiCell Culture TechniquesCell physiologyCellsCellular biologyChemicalsCholeraCollaborationsCombating Antibiotic Resistant BacteriaCommunitiesCyclic AMPDecision MakingDevelopmentDietDinucleoside PhosphatesEnergy TransferEscherichia coliFlow CytometryFluorescenceFluorescence MicroscopyFutureGene ExpressionGenesGenomicsGoalsGrantHealth StatusHumanImageImmune responseImmune signalingIndividualInterferonsIntestinesKentuckyKnowledgeLigandsLightLinkListeria monocytogenesListeriosisLyme DiseaseMammalian CellMapsMichiganMicrobial BiofilmsMicroscopeModelingMolecularNatural ImmunityOrganismOutcomePathway interactionsPeriodicityProductionProteinsRNARaceReaderReagentRegulationReportingResearchSecond Messenger SystemsSideSignal PathwaySignal TransductionSignaling MoleculeSurfaceSymbiosisSystemTechnologyTicksToxinTransfer RNAUnited States National Institutes of HealthVibrio choleraeWaterWorkanimal imagingaptamerarmbasebiological adaptation to stresscell motilitycellular imagingcomplex biological systemsdesigngut microbiotahigh throughput analysishigh throughput screeningimaging modalityimaging platformin vivoinnovationinsightinventionmicrobial communitynanomolarnovelpathogenprebioticsprogramspublic health relevanceratiometricreceptorresponsesmall moleculespatiotemporaltoolvectorwhole animal imaging
项目摘要
PROJECT SUMMARY
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
Cyclic dinucleotides (CDNs) are an emerging class of signaling molecules at the intersection of bacterial and
host interactions. Within bacterial cells, CDNs act as chemical signals that control distinct cellular programs for
colonization (cyclic di-GMP), stress response (cyclic di-AMP), and surface contact (cyclic AMP-GMP).
Furthermore, these three bacterial CDNs and a newfound mammalian CDN called cGAMP are found to stimulate
an innate immune signaling pathway in mammalian cells through a protein receptor called STING (Stimulator of
Interferon Genes). Thus, understanding how CDN levels are regulated by environmental and host inputs would
advance our knowledge of bacterial-host interactions, on both the side of bacterial pathogens and the host
immune response. However, the major roadblock to obtaining these critical mechanistic insights has been the
difficulty in observing changes in the levels of these chemical signals across scales and systems. Thus, the
broad goals of this proposal are to develop luminescent and fluorescent biosensors that enable high-throughput
analysis and imaging of CDNs from many to single cells (Aim 1), from cultures to within hosts (Aim 2), and from
individual species to communities (Aim 3). We previously established that a new type of genetically-encoded
biosensors, RNA-based fluorescent (RBF) biosensors, have sufficient sensitivity and selectivity to track and
quantitate low abundance, intracellular metabolites including CDNs. Building on our earlier invention of turn-on
RBF biosensors for cyclic di-GMP and cyclic di-AMP, we will develop design strategies to make ratiometric RBF
biosensors for these CDNs that can report on the signaling status of bacterial pathogens within hosts (Aim 2). In
collaboration with Prof. Portnoy at UC Berkeley, we will study Listeria monocytogenes, the causative agent of
listeriosis, within mammalian cells. In collaboration with Prof. Stevenson at U Kentucky, we will study Borrelia
burgdorferi, the causative agent of Lyme disease, in the tick. To enable the study of CDN signaling in diverse
bacteria and in model microbial communities, we will employ a broad-host vector system for genomic integration
of RBF biosensor genes (Aim 3). Furthermore, to enable the study of the innate immune signal cGAMP, we will
perform high-throughput selections to make novel RBF biosensors (Aim 4). Finally, we will develop
bioluminescent resonance energy transfer (BRET) biosensors that can be applied to quantitate cyclic di-GMP in
crude lysates and have future potential for whole animal imaging (Aim 1). In collaboration with Prof. Waters at
Michigan State, we will use these novel BRET biosensors to analyze the response of Vibrio cholerae, the
causative agent of cholera, to human intestinal bile acids.
项目摘要
启用细菌信号的高通量分析和单细胞成像
环状二核苷酸(CDN)是细菌和
主机互动。在细菌细胞中,CDN充当化学信号,控制不同的细胞程序
定植(环状DI-GMP),应力反应(环状DI-AMP)和表面接触(环状AMP-GMP)。
此外,发现这三个细菌CDN和新发现的哺乳动物CDN被发现刺激
哺乳动物细胞中的先天免疫信号通路通过称为刺激的蛋白质受体(刺激剂
干扰素基因)。因此,了解如何通过环境和主机输入调节CDN水平
在细菌病原体和宿主的一侧都提高了我们对细菌宿主相互作用的了解
免疫反应。但是,获得这些关键机理见解的主要障碍是
难以观察跨尺度和系统的这些化学信号水平的变化。因此,
该提案的广泛目标是开发发光和荧光生物传感器,使高通量能够
从许多细胞到单个细胞(AIM 1)的CDN分析和成像,从培养到宿主内部(AIM 2),从
各种物种到社区(目标3)。我们以前确定了一种新型的遗传编码
生物传感器,基于RNA的荧光(RBF)生物传感器,对跟踪和选择性具有足够的灵敏度和选择性
定量低丰度,包括CDN在内的细胞内代谢产物。建立我们较早的上交发明
RBF生物传感器用于环状DI-GMP和循环DI-AMP,我们将制定设计策略以制造比率RBF
这些CDN的生物传感器可以报告宿主内细菌病原体的信号传导状态(AIM 2)。在
与加州大学伯克利分校的Portnoy教授合作,我们将研究单核细胞增生李斯特菌,
李斯特氏病,在哺乳动物细胞内。与肯塔基州史蒂文森教授合作,我们将学习Borrelia
Burgdorferi是莱姆病的病因,在壁虱中。为了研究不同的CDN信号传导
细菌和模型微生物群落中,我们将采用基因组整合的广泛主持媒介系统
RBF生物传感器基因(AIM 3)。此外,为了实现先天免疫信号CGAMP的研究,我们将
执行高通量选择以制造新型的RBF生物传感器(AIM 4)。最后,我们将发展
生物发光谐振能传递(BRET)生物传感器可用于定量环状二-GMP
粗裂解物,并具有将来的整个动物成像的潜力(AIM 1)。与Waters教授合作
密歇根州立大学,我们将使用这些新颖的BRET生物传感器来分析Vibrio Cholerae的响应,
霍乱的致病药物,对人肠胆汁酸。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Chen Hammond其他文献
Ming Chen Hammond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Chen Hammond', 18)}}的其他基金
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10709561 - 财政年份:2017
- 资助金额:
$ 32.36万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10522177 - 财政年份:2017
- 资助金额:
$ 32.36万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
9744967 - 财政年份:2017
- 资助金额:
$ 32.36万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10001046 - 财政年份:2017
- 资助金额:
$ 32.36万 - 项目类别:
A Chemical Biology Approach to Tagging RNAs in Live Cells
标记活细胞中 RNA 的化学生物学方法
- 批准号:
8146809 - 财政年份:2011
- 资助金额:
$ 32.36万 - 项目类别:
相似国自然基金
大熊猫主食竹叶多酚抗动物细菌性肠炎的物质基础与作用机制
- 批准号:32370557
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
哺乳动物细胞分泌的AI-2信号类似物鉴定及其在宿主-细菌相互作用中的功能研究
- 批准号:32370134
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于口腔灌注种植体周围炎动物模型探索多细菌感染后的宿主免疫反应机制
- 批准号:82201049
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于口腔灌注种植体周围炎动物模型探索多细菌感染后的宿主免疫反应机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
渭河潜流带无脊椎动物-细菌协同驱动的溶解有机质迁移转化机理研究
- 批准号:42101085
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Epitope-Based CSP Vaccines Optimized to Achieve Long-Term Sterile Immunity
经过优化的基于表位的 CSP 疫苗可实现长期无菌免疫
- 批准号:
10637778 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Project 1: The impact of innate immune responses on the development of broadly neutralizing antibodies by vaccination
项目 1:先天免疫反应对通过疫苗接种产生广泛中和抗体的影响
- 批准号:
10731281 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Examination of Ornithine Decarboxylase Antizyme RNA Structure and Function from Various Organisms for the Development of Antibiological Agents
检查不同生物体的鸟氨酸脱羧酶抗酶 RNA 结构和功能,用于开发抗生素
- 批准号:
10730595 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Auto-antibodies as predictive markers for Post treatment Lyme Disease Syndrome
自身抗体作为治疗后莱姆病综合征的预测标记
- 批准号:
10737996 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别: